Suppr超能文献

基于生理的药代动力学模型显示,大鼠首过消除过程中可待因的肠道代谢极少。

Physiologically based pharmacokinetic modeling revealed minimal codeine intestinal metabolism in first-pass removal in rats.

作者信息

Noh Keumhan, Chen Shu, Yang Qi J, Pang K Sandy

机构信息

Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada.

Apotex Inc., 150 Signet Drive, Toronto, Ontario, M9L 1T9, Canada.

出版信息

Biopharm Drug Dispos. 2017 Jan;38(1):50-74. doi: 10.1002/bdd.2051.

Abstract

The physiologically based model with segregated flow to the intestine (SFM-PBPK; partial, lower flow to enterocyte region vs. greater flow to serosal region) was found to describe the first-pass glucuronidation of morphine (M) to morphine-3β-glucuronide (MG) in rats after intraduodenal (i.d.) and intravenous (i.v.) administration better than the traditional model (TM), for which a single intestinal flow perfused the whole of the intestinal tissue. The segregated flow model (SFM) described a disproportionately greater extent of intestinal morphine glucuronidation for i.d. vs. i.v. administration. The present study applied the same PBPK modeling approaches to examine the contributions of the intestine and liver on the first-pass metabolism of the precursor, codeine (C, 3-methylmorphine) in the rat. Unexpectedly, the profiles of codeine, morphine and morphine-3β-glucuronide in whole blood, bile and urine, assayed by LCMS, were equally well described by both the TM-PBPK and SFM-PBPK. The fitted parameters for the models were similar, and the net formation intrinsic clearance of morphine (from codeine) for the liver was much higher, being 9- to 13-fold that of the intestine. Simulations, based on the absence of intestinal formation of morphine, correlated well with observations. The lack of discrimination of SFM and TM with the codeine data did not invalidate the SFM-PBPK model but rather suggests that the liver is the only major organ for codeine metabolism. Because of little or no contribution by the intestine to the metabolism of codeine, both the TM- and SFM-PBPK models are equally consistent with the data. Copyright © 2016 John Wiley & Sons, Ltd.

摘要

基于生理学的肠道分流模型(SFM-PBPK;部分、较低流量进入肠细胞区域,而较高流量进入浆膜区域)被发现比传统模型(TM)能更好地描述大鼠十二指肠内(i.d.)和静脉内(i.v.)给药后吗啡(M)首过代谢为吗啡-3β-葡萄糖醛酸苷(MG)的过程,传统模型中单一的肠道血流灌注整个肠道组织。分流模型(SFM)描述了十二指肠内给药与静脉内给药相比,肠道吗啡葡萄糖醛酸化程度不成比例地更高。本研究应用相同的PBPK建模方法来研究肠道和肝脏对大鼠中前体可待因(C,3-甲基吗啡)首过代谢的贡献。出乎意料的是,通过LCMS测定的全血、胆汁和尿液中可待因、吗啡和吗啡-3β-葡萄糖醛酸苷的谱图,TM-PBPK和SFM-PBPK都能同样好地描述。模型的拟合参数相似肝脏中吗啡(来自可待因)的净生成内在清除率要高得多,是肠道的9至13倍。基于肠道中不存在吗啡生成的模拟与观察结果相关性良好。SFM和TM对可待因数据缺乏区分并不使SFM-PBPK模型无效,而是表明肝脏是可待因代谢的唯一主要器官。由于肠道对可待因代谢的贡献很小或没有,TM-和SFM-PBPK模型都与数据同样一致。版权所有© 2016约翰威立父子有限公司。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验