Zelano Christina, Jiang Heidi, Zhou Guangyu, Arora Nikita, Schuele Stephan, Rosenow Joshua, Gottfried Jay A
Departments of Neurology and
Departments of Neurology and.
J Neurosci. 2016 Dec 7;36(49):12448-12467. doi: 10.1523/JNEUROSCI.2586-16.2016.
The need to breathe links the mammalian olfactory system inextricably to the respiratory rhythms that draw air through the nose. In rodents and other small animals, slow oscillations of local field potential activity are driven at the rate of breathing (∼2-12 Hz) in olfactory bulb and cortex, and faster oscillatory bursts are coupled to specific phases of the respiratory cycle. These dynamic rhythms are thought to regulate cortical excitability and coordinate network interactions, helping to shape olfactory coding, memory, and behavior. However, while respiratory oscillations are a ubiquitous hallmark of olfactory system function in animals, direct evidence for such patterns is lacking in humans. In this study, we acquired intracranial EEG data from rare patients (Ps) with medically refractory epilepsy, enabling us to test the hypothesis that cortical oscillatory activity would be entrained to the human respiratory cycle, albeit at the much slower rhythm of ∼0.16-0.33 Hz. Our results reveal that natural breathing synchronizes electrical activity in human piriform (olfactory) cortex, as well as in limbic-related brain areas, including amygdala and hippocampus. Notably, oscillatory power peaked during inspiration and dissipated when breathing was diverted from nose to mouth. Parallel behavioral experiments showed that breathing phase enhances fear discrimination and memory retrieval. Our findings provide a unique framework for understanding the pivotal role of nasal breathing in coordinating neuronal oscillations to support stimulus processing and behavior.
Animal studies have long shown that olfactory oscillatory activity emerges in line with the natural rhythm of breathing, even in the absence of an odor stimulus. Whether the breathing cycle induces cortical oscillations in the human brain is poorly understood. In this study, we collected intracranial EEG data from rare patients with medically intractable epilepsy, and found evidence for respiratory entrainment of local field potential activity in human piriform cortex, amygdala, and hippocampus. These effects diminished when breathing was diverted to the mouth, highlighting the importance of nasal airflow for generating respiratory oscillations. Finally, behavioral data in healthy subjects suggest that breathing phase systematically influences cognitive tasks related to amygdala and hippocampal functions.
呼吸需求将哺乳动物的嗅觉系统与通过鼻子吸入空气的呼吸节律紧密相连。在啮齿动物和其他小型动物中,嗅球和皮层的局部场电位活动的缓慢振荡以呼吸频率(约2 - 12赫兹)驱动,更快的振荡爆发与呼吸周期的特定阶段耦合。这些动态节律被认为可调节皮层兴奋性并协调网络相互作用,有助于塑造嗅觉编码、记忆和行为。然而,虽然呼吸振荡是动物嗅觉系统功能普遍存在的标志,但人类缺乏此类模式的直接证据。在本研究中,我们从患有药物难治性癫痫的罕见患者(P)那里获取了颅内脑电图数据,从而能够检验以下假设:皮层振荡活动将被人类呼吸周期所夹带,尽管其节律要慢得多,约为0.16 - 0.33赫兹。我们的结果表明,自然呼吸使人类梨状(嗅觉)皮层以及包括杏仁核和海马体在内的与边缘系统相关的脑区中的电活动同步。值得注意的是,振荡功率在吸气时达到峰值,当呼吸从鼻子转向嘴巴时消散。平行的行为实验表明,呼吸阶段增强了恐惧辨别和记忆检索。我们的发现为理解鼻呼吸在协调神经元振荡以支持刺激处理和行为方面的关键作用提供了一个独特的框架。
长期以来,动物研究表明,即使在没有气味刺激的情况下,嗅觉振荡活动也会随着自然呼吸节律出现。呼吸周期是否会在人类大脑中诱发皮层振荡尚不清楚。在本研究中,我们从患有药物难治性癫痫的罕见患者那里收集了颅内脑电图数据,并发现了人类梨状皮层、杏仁核和海马体中局部场电位活动的呼吸夹带证据。当呼吸转向嘴巴时,这些效应减弱,突出了鼻气流对产生呼吸振荡的重要性。最后,健康受试者的行为数据表明,呼吸阶段会系统性地影响与杏仁核和海马体功能相关的认知任务。