Department of Psychology, Virginia Tech.
Psychol Trauma. 2018 Jan;10(1):58-66. doi: 10.1037/tra0000237. Epub 2016 Dec 8.
Network analysis is a useful tool for understanding how symptoms interact with one another to influence psychopathology. However, this analytic strategy has not been fully utilized in the PTSD field. The current study utilized network analysis to examine connectedness and strength among PTSD symptoms (employing both partial correlation and regression network analyses) among a community sample of students exposed to the 2007 Virginia Tech shootings.
Respondents (N = 4,639) completed online surveys 3-4 months postshootings, with PTSD symptom severity measured via the Trauma Symptom Questionnaire.
Data were analyzed via adaptive least absolute shrinkage and selection operator (LASSO) and relative importance networks, as well as Dijkstra's algorithm to identify the shortest path from each symptom to all other symptoms. Relative importance network analysis revealed that intrusive thoughts had the strongest influence on other symptoms (i.e., had many strong connections [highest outdegree]) while computing Dijkstra's algorithm indicated that anger produced the shortest path to all other symptoms (i.e., the strongest connections to all other symptoms).
Findings suggest that anger or intrusion likely play a crucial role in the development and maintenance of PTSD (i.e., are more influential within the network than are other symptoms). (PsycINFO Database Record
网络分析是一种用于理解症状如何相互作用以影响精神病理学的有用工具。然而,这种分析策略在 PTSD 领域尚未得到充分利用。本研究利用网络分析来检查经历 2007 年弗吉尼亚理工大学校园枪击事件的社区学生样本中 PTSD 症状之间的关联性和强度(采用部分相关和回归网络分析)。
受访者(N=4639)在枪击事件发生后 3-4 个月完成在线调查,通过创伤症状问卷来衡量 PTSD 症状严重程度。
通过自适应最小绝对收缩和选择算子(LASSO)和相对重要性网络以及 Dijkstra 算法来分析数据,以确定从每个症状到所有其他症状的最短路径。相对重要性网络分析表明,侵入性思维对其他症状的影响最大(即具有许多强连接[最高出度]),而计算 Dijkstra 算法表明愤怒与所有其他症状的最短路径(即与所有其他症状的最强连接)。
研究结果表明,愤怒或侵入性思维可能在 PTSD 的发展和维持中起着至关重要的作用(即,在网络中比其他症状更具影响力)。