Triolo R J, Moskowitz G D
IEEE Trans Biomed Eng. 1989 Oct;36(10):1004-17. doi: 10.1109/10.40801.
This paper details the theoretical development and simulation of a complete time-series myoprocessor which provides reliable and economical predictions of both the magnitude and direction of limb motion from the spectral content of the surface EMG. Treating multiple channels of surface EMG as a vector-valued autoregressive process incorporates spatially distributed information which extends the operating range of parallel filtering limb function classifiers and reduces their sensitivity to modeling conditions. Active joint moment is estimated simultaneously from the pooled variance of the prewhitened EMG generated during the classification procedure. Estimation from the prewhitened sequence imposes no additional computational requirements and extends optimal myoprocessors to include multiple channels of serially dependent data. Such a system may be applied to the control of actively powered prostheses or orthoses.
本文详细介绍了一种完整的时间序列肌电信号处理器的理论发展和模拟,该处理器可根据表面肌电图的频谱内容,对肢体运动的大小和方向提供可靠且经济的预测。将多通道表面肌电图视为向量值自回归过程,纳入了空间分布信息,扩展了并行滤波肢体功能分类器的工作范围,并降低了它们对建模条件的敏感性。在分类过程中,通过对预白化肌电图的合并方差同时估计主动关节力矩。从预白化序列进行估计不会增加额外的计算要求,并将最优肌电信号处理器扩展到包括多个序列相关数据通道。这样的系统可应用于主动动力假肢或矫形器的控制。