Jiangsu Key Laboratory for Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University , Nanjing 210095, China.
Rothamsted Research , Harpenden, Hertfordshire AL5 2JQ, United Kingdom.
Environ Sci Technol. 2016 Dec 6;50(23):12602-12611. doi: 10.1021/acs.est.6b02138. Epub 2016 Nov 23.
Land applications of municipal sewage sludge may pose a risk of introducing antibiotic resistance genes (ARGs) from urban environments into agricultural systems. However, how the sewage sludge recycling and application method influence soil resistome and mobile genetic elements (MGEs) remains unclear. In the present study, high through-put quantitative PCR was conducted on the resistome of soils from a field experiment with past (between 1994 and 1997) and annual (since 1994) applications of five different sewage sludges. Total inputs of organic carbon were similar between the two modes of sludge applications. Intrinsic soil resistome, defined as the ARGs shared by the soils in the control and sludge-amended plots, consisted of genes conferring resistance to multidrug, β-lactam, Macrolide-Lincosamide-Streptogramin B (MLSB), tetracycline, vancomycin, and aminoglycoside, with multidrug resistance genes as the most abundant members. There was a strong correlation between the abundance of ARGs and MGE marker genes in soils. The composition and diversity of ARGs in the five sludges were substantially different from those in soils. Considerable proportions of ARGs and MGE marker genes in the sludges attenuated following the application, especially aminoglycoside and tetracycline resistance genes. Annual applications posed a more significant impact on the soil resistome, through both continued introduction and stimulation of the soil intrinsic ARGs. In addition, direct introduction of sludge-specific ARGs into soil was observed especially from ARG-rich sludge. These results provide a better insight into the characteristics of ARG dissemination from urban environment to the agricultural system through sewage sludge applications.
土地应用城市污水污泥可能会带来风险,将城市环境中的抗生素抗性基因(ARGs)引入农业系统。然而,污水污泥的回收和应用方式如何影响土壤抗性组和移动遗传元件(MGEs)尚不清楚。在本研究中,对过去(1994 年至 1997 年之间)和每年(自 1994 年以来)应用五种不同污水污泥的田间试验土壤的抗性组进行了高通量定量 PCR。两种污泥应用模式的总有机碳输入相似。固有土壤抗性组定义为对照和污泥处理区土壤共有的 ARGs,由对多药、β-内酰胺、大环内酯-林可酰胺-链阳性菌素 B(MLSB)、四环素、万古霉素和氨基糖苷类抗生素具有抗性的基因组成,其中多药耐药基因是最丰富的成员。土壤中 ARGs 和 MGE 标记基因的丰度之间存在很强的相关性。五种污泥中的 ARG 组成和多样性与土壤中的 ARG 有很大的不同。污泥中的相当一部分 ARGs 和 MGE 标记基因在应用后减弱,尤其是氨基糖苷类和四环素抗性基因。与连续引入和刺激土壤内在 ARGs 相比,每年的应用对土壤抗性组的影响更大。此外,还观察到污泥特异性 ARGs 直接被引入土壤,尤其是从 ARG 丰富的污泥中。这些结果提供了更好的了解通过污水污泥应用将城市环境中的 ARG 传播到农业系统的特征。