Shivange Amol V, Hoeffken Hans Wolfgang, Haefner Stefan, Schwaneberg Ulrich
Lehrstuhl für Biotechnologie, RWTH Aachen University, Aachen, Germany.
School of Engineering and Science, Jacobs University Bremen, Bremen, Germany.
Biotechniques. 2016 Dec 1;61(6):305-314. doi: 10.2144/000114483.
Protein consensus-based surface engineering (ProCoS) is a simple and efficient method for directed protein evolution combining computational analysis and molecular biology tools to engineer protein surfaces. ProCoS is based on the hypothesis that conserved residues originated from a common ancestor and that these residues are crucial for the function of a protein, whereas highly variable regions (situated on the surface of a protein) can be targeted for surface engineering to maximize performance. ProCoS comprises four main steps: () identification of conserved and highly variable regions; () protein sequence design by substituting residues in the highly variable regions, and gene synthesis; () in vitro DNA recombination of synthetic genes; and () screening for active variants. ProCoS is a simple method for surface mutagenesis in which multiple sequence alignment is used for selection of surface residues based on a structural model. To demonstrate the technique's utility for directed evolution, the surface of a phytase enzyme from (Ymphytase) was subjected to ProCoS. Screening just 1050 clones from ProCoS engineering-guided mutant libraries yielded an enzyme with 34 amino acid substitutions. The surface-engineered Ymphytase exhibited 3.8-fold higher pH stability (at pH 2.8 for 3 h) and retained 40% of the enzyme's specific activity (400 U/mg) compared with the wild-type Ymphytase. The pH stability might be attributed to a significantly increased (20 percentage points; from 9% to 29%) number of negatively charged amino acids on the surface of the engineered phytase.
基于蛋白质共识的表面工程(ProCoS)是一种简单有效的定向蛋白质进化方法,它结合了计算分析和分子生物学工具来改造蛋白质表面。ProCoS基于这样的假设:保守残基起源于共同祖先,并且这些残基对蛋白质的功能至关重要,而高度可变区域(位于蛋白质表面)可作为表面工程的目标,以实现性能最大化。ProCoS包括四个主要步骤:()识别保守和高度可变区域;()通过替换高度可变区域中的残基进行蛋白质序列设计以及基因合成;()合成基因的体外DNA重组;以及()筛选活性变体。ProCoS是一种简单的表面诱变方法,其中基于结构模型使用多序列比对来选择表面残基。为了证明该技术在定向进化中的实用性,对来自(嗜热栖热放线菌的植酸酶)的植酸酶表面进行了ProCoS处理。从ProCoS工程指导的突变体文库中仅筛选1050个克隆,就得到了一种具有34个氨基酸替换的酶。与野生型嗜热栖热放线菌植酸酶相比,表面工程化的嗜热栖热放线菌植酸酶表现出高3.8倍的pH稳定性(在pH 2.8下3小时),并保留了该酶40%的比活性(400 U/mg)。pH稳定性可能归因于工程化植酸酶表面带负电荷氨基酸的数量显著增加(20个百分点;从9%增加到29%)。