Suppr超能文献

将新信息纳入现有风险预测模型的方法比较。

Comparison of approaches for incorporating new information into existing risk prediction models.

作者信息

Grill Sonja, Ankerst Donna P, Gail Mitchell H, Chatterjee Nilanjan, Pfeiffer Ruth M

机构信息

Department of Life Sciences and Mathematics, Technical University Munich, Munich, Germany.

Department of Urology, University of Texas Health Science Center at San Antonio, San Antonio, TX, U.S.A.

出版信息

Stat Med. 2017 Mar 30;36(7):1134-1156. doi: 10.1002/sim.7190. Epub 2016 Dec 11.

Abstract

We compare the calibration and variability of risk prediction models that were estimated using various approaches for combining information on new predictors, termed 'markers', with parameter information available for other variables from an earlier model, which was estimated from a large data source. We assess the performance of risk prediction models updated based on likelihood ratio (LR) approaches that incorporate dependence between new and old risk factors as well as approaches that assume independence ('naive Bayes' methods). We study the impact of estimating the LR by (i) fitting a single model to cases and non-cases when the distribution of the new markers is in the exponential family or (ii) fitting separate models to cases and non-cases. We also evaluate a new constrained maximum likelihood method. We study updating the risk prediction model when the new data arise from a cohort and extend available methods to accommodate updating when the new data source is a case-control study. To create realistic correlations between predictors, we also based simulations on real data on response to antiviral therapy for hepatitis C. From these studies, we recommend the LR method fit using a single model or constrained maximum likelihood. Copyright © 2016 John Wiley & Sons, Ltd.

摘要

我们比较了风险预测模型的校准和变异性,这些模型是通过各种方法估计得出的,这些方法将新预测指标(称为“标记物”)的信息与早期模型中其他变量可用的参数信息相结合,早期模型是根据一个大型数据源估计得出的。我们评估了基于似然比(LR)方法更新的风险预测模型的性能,这些方法纳入了新旧风险因素之间的依赖性,以及假设独立性的方法(“朴素贝叶斯”方法)。我们研究了通过以下方式估计LR的影响:(i)当新标记物的分布属于指数族时,对病例和非病例拟合单一模型;(ii)对病例和非病例分别拟合模型。我们还评估了一种新的约束最大似然法。我们研究了新数据来自队列时风险预测模型的更新,并扩展了现有方法以适应新数据源为病例对照研究时的更新。为了在预测指标之间建立现实的相关性,我们还基于丙型肝炎抗病毒治疗反应的真实数据进行模拟。从这些研究中,我们推荐使用单一模型拟合的LR方法或约束最大似然法。版权所有© 2016约翰威立父子有限公司。

相似文献

1
Comparison of approaches for incorporating new information into existing risk prediction models.
Stat Med. 2017 Mar 30;36(7):1134-1156. doi: 10.1002/sim.7190. Epub 2016 Dec 11.
2
A constrained maximum likelihood approach to developing well-calibrated models for predicting binary outcomes.
Lifetime Data Anal. 2024 Jul;30(3):624-648. doi: 10.1007/s10985-024-09628-9. Epub 2024 May 8.
3
Competing-risks model for prediction of small-for-gestational-age neonate from maternal characteristics and medical history.
Ultrasound Obstet Gynecol. 2020 Aug;56(2):196-205. doi: 10.1002/uog.22129. Epub 2020 Jul 10.
4
Methods for updating a risk prediction model for cardiac surgery: a statistical primer.
Interact Cardiovasc Thorac Surg. 2019 Mar 1;28(3):333-338. doi: 10.1093/icvts/ivy338.
7
A nonparametric empirical Bayes framework for large-scale multiple testing.
Biostatistics. 2012 Jul;13(3):427-39. doi: 10.1093/biostatistics/kxr039. Epub 2011 Nov 14.
8
Improving prediction models with new markers: a comparison of updating strategies.
BMC Med Res Methodol. 2016 Sep 27;16(1):128. doi: 10.1186/s12874-016-0231-2.
9
Comparisons of risk prediction methods using nested case-control data.
Stat Med. 2017 Feb 10;36(3):455-465. doi: 10.1002/sim.7143. Epub 2016 Oct 13.
10
Validating and updating a risk model for pneumonia - a case study.
BMC Med Res Methodol. 2012 Jul 20;12:99. doi: 10.1186/1471-2288-12-99.

引用本文的文献

1
A comparison of some existing and novel methods for integrating historical models to improve estimation of coefficients in logistic regression.
J R Stat Soc Ser A Stat Soc. 2024 Sep 24;188(1):46-67. doi: 10.1093/jrsssa/qnae093. eCollection 2025 Jan.
3
A constrained maximum likelihood approach to developing well-calibrated models for predicting binary outcomes.
Lifetime Data Anal. 2024 Jul;30(3):624-648. doi: 10.1007/s10985-024-09628-9. Epub 2024 May 8.
4
Improvement of an External Predictive Model Based on New Information Using a Synthetic Data Approach: Application to CADASIL.
Neurol Genet. 2023 Aug 3;9(5):e200091. doi: 10.1212/NXG.0000000000200091. eCollection 2023 Oct.
5
Efficient estimation of a Cox model when integrating the subgroup incidence rate information.
J Appl Stat. 2022 May 4;50(10):2151-2170. doi: 10.1080/02664763.2022.2068512. eCollection 2023.
6
Synthetic data method to incorporate external information into a current study.
Can J Stat. 2019 Dec;47(4):580-603. doi: 10.1002/cjs.11513. Epub 2019 Jun 26.
9
Informing a Risk Prediction Model for Binary Outcomes with External Coefficient Information.
J R Stat Soc Ser C Appl Stat. 2019 Jan;68(1):121-139. doi: 10.1111/rssc.12306. Epub 2018 Aug 13.
10
Assessment of breast cancer risk: which tools to use?
Lancet Oncol. 2019 Apr;20(4):463-464. doi: 10.1016/S1470-2045(19)30071-3. Epub 2019 Feb 21.

本文引用的文献

1
Comment: Addressing the Need for Portability in Big Data Model Building and Calibration.
J Am Stat Assoc. 2016;111(513):127-129. doi: 10.1080/01621459.2016.1149406. Epub 2016 May 5.
2
Constrained Maximum Likelihood Estimation for Model Calibration Using Summary-level Information from External Big Data Sources.
J Am Stat Assoc. 2016 Mar;111(513):107-117. doi: 10.1080/01621459.2015.1123157. Epub 2016 May 5.
3
A simple-to-use method incorporating genomic markers into prostate cancer risk prediction tools facilitated future validation.
J Clin Epidemiol. 2015 May;68(5):563-73. doi: 10.1016/j.jclinepi.2015.01.006. Epub 2015 Jan 14.
5
Updating risk prediction tools: a case study in prostate cancer.
Biom J. 2012 Jan;54(1):127-42. doi: 10.1002/bimj.201100062. Epub 2011 Nov 17.
6
Estimating the capacity for improvement in risk prediction with a marker.
Biostatistics. 2009 Jan;10(1):172-86. doi: 10.1093/biostatistics/kxn025. Epub 2008 Aug 19.
7
Predicting prostate cancer risk through incorporation of prostate cancer gene 3.
J Urol. 2008 Oct;180(4):1303-8; discussion 1308. doi: 10.1016/j.juro.2008.06.038. Epub 2008 Aug 15.
9
Probability of detecting disease-associated single nucleotide polymorphisms in case-control genome-wide association studies.
Biostatistics. 2008 Apr;9(2):201-15. doi: 10.1093/biostatistics/kxm032. Epub 2007 Sep 14.
10
A new logistic regression approach for the evaluation of diagnostic test results.
Med Decis Making. 2005 Mar-Apr;25(2):168-77. doi: 10.1177/0272989X05275154.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验