Fetal Medicine Research Institute, King's College Hospital, London, UK.
Institute of Health Research, University of Exeter, Exeter, UK.
Ultrasound Obstet Gynecol. 2021 Mar;57(3):392-400. doi: 10.1002/uog.23118. Epub 2021 Feb 15.
To expand a new competing-risks model for prediction of a small-for-gestational-age (SGA) neonate, by the addition of pregnancy-associated plasma protein-A (PAPP-A) and placental growth factor (PlGF), and to evaluate and compare PAPP-A and PlGF in predicting SGA.
This was a prospective observational study of 60 875 women with singleton pregnancy undergoing routine ultrasound examination at 11 + 0 to 13 + 6 weeks' gestation. We fitted a folded-plane regression model for the PAPP-A and PlGF likelihoods. A previously developed maternal history model and the likelihood models were combined, according to Bayes' theorem, to obtain individualized distributions for gestational age (GA) at delivery and birth-weight Z-score. We assessed the discrimination and calibration of the model. McNemar's test was used to compare the detection rates for SGA with, without or independently of pre-eclampsia (PE) occurrence, of different combinations of maternal history, PAPP-A and PlGF, for a fixed false-positive rate.
The distributions of PAPP-A and PlGF depend on both GA at delivery and birth-weight Z-score, in the same continuous likelihood, according to a folded-plane regression model. The new approach offers the capability for risk computation for any desired birth-weight Z-score and GA at delivery cut-off. PlGF was consistently and significantly better than PAPP-A in predicting SGA delivered before 37 weeks, especially in cases with co-existence of PE. PAPP-A had similar performance to PlGF for the prediction of SGA without PE. At a fixed false-positive rate of 10%, the combination of maternal history, PlGF and PAPP-A predicted 33.8%, 43.8% and 48.4% of all cases of a SGA neonate with birth weight < 10 percentile delivered at ≥ 37, < 37 and < 32 weeks' gestation, respectively. The respective values for birth weight < 3 percentile were 38.6%, 48.7% and 51.0%. The new model performed well in terms of risk calibration.
The combination of PAPP-A and PlGF values with maternal characteristics, according to Bayes' theorem, improves prediction of SGA. PlGF is a better predictor of SGA than PAPP-A, especially when PE is present. The new competing-risks model for SGA can be tailored to each pregnancy and to the relevant clinical requirements. © 2020 International Society of Ultrasound in Obstetrics and Gynecology.
通过添加妊娠相关血浆蛋白 A(PAPP-A)和胎盘生长因子(PlGF),对预测小于胎龄儿(SGA)的新竞争风险模型进行扩展,并评估和比较 PAPP-A 和 PlGF 对预测 SGA 的作用。
这是一项前瞻性观察性研究,纳入了 60875 名单胎妊娠女性,在 11+0 至 13+6 孕周进行常规超声检查。我们拟合了一个折叠平面回归模型来预测 PAPP-A 和 PlGF 的可能性。根据贝叶斯定理,将先前建立的母体史模型和可能性模型相结合,以获得分娩时的孕龄(GA)和出生体重 Z 分数的个体化分布。我们评估了模型的区分度和校准度。McNemar 检验用于比较不同母体史、PAPP-A 和 PlGF 组合在固定假阳性率下对 SGA 的检出率,包括有无子痫前期(PE)发生的情况。
根据折叠平面回归模型,PAPP-A 和 PlGF 的分布取决于分娩时的 GA 和出生体重 Z 分数,在相同的连续可能性中。新方法能够为任何所需的出生体重 Z 分数和分娩时的 GA 截止值计算风险。PlGF 在预测 37 周前分娩的 SGA 方面始终优于 PAPP-A,尤其是在存在 PE 的情况下。对于无 PE 的 SGA 预测,PAPP-A 的表现与 PlGF 相似。在固定的假阳性率为 10%的情况下,母体史、PlGF 和 PAPP-A 的组合分别预测了≥37 周、<37 周和<32 周分娩时所有出生体重<第 10 百分位数的 SGA 新生儿的 33.8%、43.8%和 48.4%,出生体重<第 3 百分位数的分别为 38.6%、48.7%和 51.0%。新模型在风险校准方面表现良好。
根据贝叶斯定理,将 PAPP-A 和 PlGF 值与母体特征相结合,可提高对 SGA 的预测能力。PlGF 是预测 SGA 的更好指标,尤其是在存在 PE 的情况下。新的 SGA 竞争风险模型可以根据每个妊娠和相关临床要求进行定制。© 2020 年国际妇产科超声学会。