Suppr超能文献

一种使用Mltrp和Rvm的生物医疗废物识别与分类算法。

A Bio Medical Waste Identification and Classification Algorithm Using Mltrp and Rvm.

作者信息

Achuthan Aravindan, Ayyallu Madangopal Vasumathi

机构信息

Dept. of Civil Engineering, Latha Mathavan Engineering College, Madurai, Tamil Nadu, India.

Dept. of Civil Engineering, Sethu Institute of Technology, Kariyapatti, Tamil Nadu, India.

出版信息

Iran J Public Health. 2016 Oct;45(10):1276-1287.

Abstract

BACKGROUND

We aimed to extract the histogram features for text analysis and, to classify the types of Bio Medical Waste (BMW) for garbage disposal and management.

METHODS

The given BMW was preprocessed by using the median filtering technique that efficiently reduced the noise in the image. After that, the histogram features of the filtered image were extracted with the help of proposed Modified Local Tetra Pattern (MLTrP) technique. Finally, the Relevance Vector Machine (RVM) was used to classify the BMW into human body parts, plastics, cotton and liquids.

RESULTS

The BMW image was collected from the garbage image dataset for analysis. The performance of the proposed BMW identification and classification system was evaluated in terms of sensitivity, specificity, classification rate and accuracy with the help of MATLAB. When compared to the existing techniques, the proposed techniques provided the better results.

CONCLUSION

This work proposes a new texture analysis and classification technique for BMW management and disposal. It can be used in many real time applications such as hospital and healthcare management systems for proper BMW disposal.

摘要

背景

我们旨在提取直方图特征用于文本分析,并对生物医疗废物(BMW)的类型进行分类,以用于垃圾处理和管理。

方法

使用中值滤波技术对给定的BMW进行预处理,该技术有效降低了图像中的噪声。之后,借助提出的改进局部四元模式(MLTrP)技术提取滤波后图像的直方图特征。最后,使用相关向量机(RVM)将BMW分类为人体部位、塑料、棉花和液体。

结果

从垃圾图像数据集中收集BMW图像进行分析。借助MATLAB,从灵敏度、特异性、分类率和准确率方面评估了所提出的BMW识别和分类系统的性能。与现有技术相比,所提出的技术提供了更好的结果。

结论

这项工作提出了一种用于BMW管理和处置的新纹理分析和分类技术。它可用于许多实时应用,如医院和医疗保健管理系统,以实现BMW的妥善处置。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7f82/5149491/ecf0b056c25c/IJPH-45-1276-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验