Suppr超能文献

BRINT:二进制旋转不变且抗噪声的纹理分类。

BRINT: binary rotation invariant and noise tolerant texture classification.

出版信息

IEEE Trans Image Process. 2014 Jul;23(7):3071-84. doi: 10.1109/TIP.2014.2325777.

Abstract

In this paper, we propose a simple, efficient, yet robust multiresolution approach to texture classification-binary rotation invariant and noise tolerant (BRINT). The proposed approach is very fast to build, very compact while remaining robust to illumination variations, rotation changes, and noise. We develop a novel and simple strategy to compute a local binary descriptor based on the conventional local binary pattern (LBP) approach, preserving the advantageous characteristics of uniform LBP. Points are sampled in a circular neighborhood, but keeping the number of bins in a single-scale LBP histogram constant and small, such that arbitrarily large circular neighborhoods can be sampled and compactly encoded over a number of scales. There is no necessity to learn a texton dictionary, as in methods based on clustering, and no tuning of parameters is required to deal with different data sets. Extensive experimental results on representative texture databases show that the proposed BRINT not only demonstrates superior performance to a number of recent state-of-the-art LBP variants under normal conditions, but also performs significantly and consistently better in presence of noise due to its high distinctiveness and robustness. This noise robustness characteristic of the proposed BRINT is evaluated quantitatively with different artificially generated types and levels of noise (including Gaussian, salt and pepper, and speckle noise) in natural texture images.

摘要

在本文中,我们提出了一种简单、高效、稳健的多分辨率纹理分类方法——二进制旋转不变和噪声容忍(BRINT)。所提出的方法构建速度非常快,在保持对光照变化、旋转变化和噪声的鲁棒性的同时,非常紧凑。我们开发了一种新颖而简单的策略,基于传统的局部二值模式(LBP)方法来计算局部二进制描述符,保留均匀 LBP 的有利特征。在圆形邻域中采样点,但保持单尺度 LBP 直方图中的 bin 数量保持不变且较小,以便可以任意大的圆形邻域进行采样,并在多个尺度上进行紧凑编码。不需要像基于聚类的方法那样学习纹理字典,也不需要调整参数来处理不同的数据集。在具有代表性的纹理数据库上进行的广泛实验结果表明,所提出的 BRINT 不仅在正常情况下优于许多最新的基于 LBP 的变体,而且在由于噪声而导致的性能显著且一致地更好,因为它具有高的独特性和鲁棒性。所提出的 BRINT 的这种噪声鲁棒性特征通过在自然纹理图像中使用不同类型和水平的人工生成噪声(包括高斯噪声、椒盐噪声和斑点噪声)进行定量评估。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验