Nanostructure Physics, Royal Institute of Technology (KTH), Albanova, SE-10791 Stockholm, Sweden.
Department of Physics, Stockholm University, 106 91 Stockholm, Sweden.
Nat Commun. 2016 Dec 13;7:13836. doi: 10.1038/ncomms13836.
Friction is a complicated phenomenon involving nonlinear dynamics at different length and time scales. Understanding its microscopic origin requires methods for measuring force on nanometer-scale asperities sliding at velocities reaching centimetres per second. Despite enormous advances in experimental technique, this combination of small length scale and high velocity remain elusive. We present a technique for rapidly measuring the frictional forces on a single asperity over a velocity range from zero to several centimetres per second. At each image pixel we obtain the velocity dependence of both conservative and dissipative forces, revealing the transition from stick-slip to smooth sliding friction. We explain measurements on graphite using a modified Prandtl-Tomlinson model, including the damped elastic deformation of the asperity. With its improved force sensitivity and small sliding amplitude, our method enables rapid and detailed surface mapping of the velocity dependence of frictional forces with less than 10 nm spatial resolution.
摩擦是一种复杂的现象,涉及不同长度和时间尺度的非线性动力学。要了解其微观起源,就需要在达到每秒厘米速度的情况下测量纳米级粗糙度上的力的方法。尽管实验技术取得了巨大进展,但小长度尺度和高速度的结合仍然难以实现。我们提出了一种在从零到每秒几厘米的速度范围内测量单个粗糙度上摩擦力的技术。在每个图像像素处,我们都获得了保守力和耗散力的速度依赖性,揭示了从粘滑到光滑滑动摩擦的转变。我们使用改进的 Prandtl-Tomlinson 模型来解释石墨上的测量结果,包括粗糙度的阻尼弹性变形。我们的方法具有改进的力灵敏度和小的滑动幅度,能够以小于 10nm 的空间分辨率快速详细地绘制摩擦力的速度依赖性的表面图。