Suppr超能文献

在纳米尺度下成像高速摩擦。

Imaging high-speed friction at the nanometer scale.

机构信息

Nanostructure Physics, Royal Institute of Technology (KTH), Albanova, SE-10791 Stockholm, Sweden.

Department of Physics, Stockholm University, 106 91 Stockholm, Sweden.

出版信息

Nat Commun. 2016 Dec 13;7:13836. doi: 10.1038/ncomms13836.

Abstract

Friction is a complicated phenomenon involving nonlinear dynamics at different length and time scales. Understanding its microscopic origin requires methods for measuring force on nanometer-scale asperities sliding at velocities reaching centimetres per second. Despite enormous advances in experimental technique, this combination of small length scale and high velocity remain elusive. We present a technique for rapidly measuring the frictional forces on a single asperity over a velocity range from zero to several centimetres per second. At each image pixel we obtain the velocity dependence of both conservative and dissipative forces, revealing the transition from stick-slip to smooth sliding friction. We explain measurements on graphite using a modified Prandtl-Tomlinson model, including the damped elastic deformation of the asperity. With its improved force sensitivity and small sliding amplitude, our method enables rapid and detailed surface mapping of the velocity dependence of frictional forces with less than 10 nm spatial resolution.

摘要

摩擦是一种复杂的现象,涉及不同长度和时间尺度的非线性动力学。要了解其微观起源,就需要在达到每秒厘米速度的情况下测量纳米级粗糙度上的力的方法。尽管实验技术取得了巨大进展,但小长度尺度和高速度的结合仍然难以实现。我们提出了一种在从零到每秒几厘米的速度范围内测量单个粗糙度上摩擦力的技术。在每个图像像素处,我们都获得了保守力和耗散力的速度依赖性,揭示了从粘滑到光滑滑动摩擦的转变。我们使用改进的 Prandtl-Tomlinson 模型来解释石墨上的测量结果,包括粗糙度的阻尼弹性变形。我们的方法具有改进的力灵敏度和小的滑动幅度,能够以小于 10nm 的空间分辨率快速详细地绘制摩擦力的速度依赖性的表面图。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f624/5159861/b6c3705d2b95/ncomms13836-f1.jpg

相似文献

1
Imaging high-speed friction at the nanometer scale.
Nat Commun. 2016 Dec 13;7:13836. doi: 10.1038/ncomms13836.
2
Micromechanics of sea ice frictional slip from test basin scale experiments.
Philos Trans A Math Phys Eng Sci. 2017 Feb 13;375(2086). doi: 10.1098/rsta.2015.0354.
3
Stick-Slip Instabilities for Interfacial Chemical Bond-Induced Friction at the Nanoscale.
J Phys Chem B. 2018 Jan 18;122(2):991-999. doi: 10.1021/acs.jpcb.7b09748. Epub 2017 Dec 8.
5
A modified multibond model for nanoscale static friction.
Philos Trans A Math Phys Eng Sci. 2022 Sep 19;380(2232):20210342. doi: 10.1098/rsta.2021.0342. Epub 2022 Aug 1.
6
On the Non-trivial Origin of Atomic-Scale Patterns in Friction Force Microscopy.
Tribol Lett. 2019;67(1):15. doi: 10.1007/s11249-018-1127-6. Epub 2018 Dec 31.
7
Friction model for the velocity dependence of nanoscale friction.
Nanotechnology. 2005 Oct;16(10):2309-24. doi: 10.1088/0957-4484/16/10/054. Epub 2005 Aug 26.
8
Statistical laws of stick-slip friction at mesoscale.
Nat Commun. 2023 Oct 5;14(1):6221. doi: 10.1038/s41467-023-41850-1.
9
Dynamic transitions in molecularly thin liquid films under frictional sliding.
Langmuir. 2008 Feb 19;24(4):1469-75. doi: 10.1021/la701714g. Epub 2007 Nov 30.
10
Time-lapse nanoscopy of friction in the non-Amontons and non-Coulomb regime.
Nano Lett. 2015 Mar 11;15(3):1476-80. doi: 10.1021/nl5032502. Epub 2014 Oct 23.

引用本文的文献

1
Negative Differential Friction Predicted in 2D Ferroelectric In Se Commensurate Contacts.
Adv Sci (Weinh). 2022 Jan;9(2):e2103443. doi: 10.1002/advs.202103443. Epub 2021 Nov 10.
2
A review of demodulation techniques for multifrequency atomic force microscopy.
Beilstein J Nanotechnol. 2020 Jan 7;11:76-91. doi: 10.3762/bjnano.11.8. eCollection 2020.
3
Friction Determination by Atomic Force Microscopy in Field of Biochemical Science.
Micromachines (Basel). 2018 Jun 21;9(7):313. doi: 10.3390/mi9070313.
4
Lyapunov estimation for high-speed demodulation in multifrequency atomic force microscopy.
Beilstein J Nanotechnol. 2018 Feb 8;9:490-498. doi: 10.3762/bjnano.9.47. eCollection 2018.
5
Effect of sliding friction in harmonic oscillators.
Sci Rep. 2017 Jun 16;7(1):3726. doi: 10.1038/s41598-017-03999-w.

本文引用的文献

1
Dynamics of atomic stick-slip friction examined with atomic force microscopy and atomistic simulations at overlapping speeds.
Phys Rev Lett. 2015 Apr 10;114(14):146102. doi: 10.1103/PhysRevLett.114.146102. Epub 2015 Apr 6.
2
Reinterpretation of velocity-dependent atomic friction: influence of the inherent instrumental noise in friction force microscopes.
Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Jul;90(1):012125. doi: 10.1103/PhysRevE.90.012125. Epub 2014 Jul 23.
3
Interpreting motion and force for narrow-band intermodulation atomic force microscopy.
Beilstein J Nanotechnol. 2013;4:45-56. doi: 10.3762/bjnano.4.5. Epub 2013 Jan 21.
4
Interaction imaging with amplitude-dependence force spectroscopy.
Nat Commun. 2013;4:1360. doi: 10.1038/ncomms2365.
5
The role of nonlinear dynamics in quantitative atomic force microscopy.
Nanotechnology. 2012 Jul 5;23(26):265705. doi: 10.1088/0957-4484/23/26/265705. Epub 2012 Jun 15.
6
Speed dependence of atomic stick-slip friction in optimally matched experiments and molecular dynamics simulations.
Phys Rev Lett. 2011 Mar 25;106(12):126101. doi: 10.1103/PhysRevLett.106.126101. Epub 2011 Mar 21.
7
Note: The intermodulation lockin analyzer.
Rev Sci Instrum. 2011 Feb;82(2):026109. doi: 10.1063/1.3541791.
8
Low temperature ultrahigh vacuum noncontact atomic force microscope in the pendulum geometry.
Rev Sci Instrum. 2011 Feb;82(2):023705. doi: 10.1063/1.3551603.
9
Amplitude and frequency modulation torsional resonance mode atomic force microscopy of a mineral surface.
Ultramicroscopy. 2009 Feb;109(3):275-9. doi: 10.1016/j.ultramic.2008.11.016. Epub 2008 Dec 6.
10
Principles of atomic friction: from sticking atoms to superlubric sliding.
Philos Trans A Math Phys Eng Sci. 2008 Apr 28;366(1869):1383-404. doi: 10.1098/rsta.2007.2164.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验