Tian Kaiwen, Gosvami Nitya N, Goldsby David L, Carpick Robert W
Department of Physics and Astronomy, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States.
School of Chemical and Biomolecular Engineering, Cornell University , Ithaca, New York 14853, United States.
J Phys Chem B. 2018 Jan 18;122(2):991-999. doi: 10.1021/acs.jpcb.7b09748. Epub 2017 Dec 8.
Earthquakes are generally caused by unstable stick-slip motion of faults. This stick-slip phenomenon, along with other frictional properties of materials at the macroscale, is well-described by empirical rate and state friction (RSF) laws. Here we study stick-slip behavior for nanoscale single-asperity silica-silica contacts in atomic force microscopy experiments. The stick-slip is quasiperiodic, and both the amplitude and spatial period of stick-slip increase with normal load and decrease with the loading point (i.e., scanning) velocity. The peak force prior to each slip increases with the temporal period logarithmically, and decreases with velocity logarithmically, consistent with stick-slip behavior at the macroscale. However, unlike macroscale behavior, the minimum force after each slip is independent of velocity. The temporal period scales with velocity in a nearly power law fashion with an exponent between -1 and -2, similar to macroscale behavior. With increasing velocity, stick-slip behavior transitions into steady sliding. In the transition regime between stick-slip and smooth sliding, some slip events exhibit only partial force drops. The results are interpreted in the context of interfacial chemical bond formation and rate effects previously identified for nanoscale contacts. These results contribute to a physical picture of interfacial chemical bond-induced stick-slip, and further establish RSF laws at the nanoscale.
地震通常由断层的不稳定粘滑运动引起。这种粘滑现象,连同宏观尺度下材料的其他摩擦特性,已由经验速率与状态摩擦(RSF)定律得到很好的描述。在此,我们在原子力显微镜实验中研究纳米尺度下单asperity二氧化硅 - 二氧化硅接触的粘滑行为。这种粘滑是准周期性的,并且粘滑的幅度和空间周期都随法向载荷增加而增大,随加载点(即扫描)速度减小。每次滑动之前的峰值力随时间周期呈对数增加,随速度呈对数减小,这与宏观尺度下的粘滑行为一致。然而,与宏观尺度行为不同的是,每次滑动之后的最小力与速度无关。时间周期与速度以接近幂律的方式缩放,指数在 -1 到 -2 之间,类似于宏观尺度行为。随着速度增加,粘滑行为转变为稳定滑动。在粘滑与平滑滑动之间的过渡区域,一些滑动事件仅表现出部分力降。这些结果在先前确定的纳米尺度接触的界面化学键形成和速率效应的背景下得到解释。这些结果有助于形成界面化学键诱导的粘滑的物理图像,并进一步在纳米尺度上确立RSF定律。