IEEE Trans Vis Comput Graph. 2017 Dec;23(12):2509-2520. doi: 10.1109/TVCG.2016.2637333. Epub 2016 Dec 8.
With uncertainty present in almost all modalities of data acquisition, reduction, transformation, and representation, there is a growing demand for mathematical analysis of uncertainty propagation in data processing pipelines. In this paper, we present a statistical framework for quantification of uncertainty and its propagation in the main stages of the visualization pipeline. We propose a novel generalization of Irwin-Hall distributions from the statistical viewpoint of splines and box-splines, that enables interpolation of random variables. Moreover, we introduce a probabilistic transfer function classification model that allows for incorporating probability density functions into the volume rendering integral. Our statistical framework allows for incorporating distributions from various sources of uncertainty which makes it suitable in a wide range of visualization applications. We demonstrate effectiveness of our approach in visualization of ensemble data, visualizing large datasets at reduced scale, iso-surface extraction, and visualization of noisy data.
由于在数据获取、减少、转换和表示的几乎所有模态中都存在不确定性,因此对数据处理管道中不确定性传播的数学分析的需求日益增长。在本文中,我们提出了一种用于在可视化管道的主要阶段量化不确定性及其传播的统计框架。我们从样条和箱样条的统计角度提出了 Irwin-Hall 分布的一种新推广,该推广能够对随机变量进行插值。此外,我们引入了一种概率转移函数分类模型,该模型允许将概率密度函数纳入体积渲染积分。我们的统计框架允许合并来自各种不确定性源的分布,这使其适用于广泛的可视化应用。我们在集合数据的可视化、在较小比例下可视化大型数据集、等位面提取以及对噪声数据的可视化方面展示了我们方法的有效性。