Ecology, Evolution, and Behavior Graduate Program, University of Minnesota, 1987 Upper Buford Circle, St. Paul, Minnesota, 55108, USA.
Department of Fisheries, Wildlife, and Conservation Biology, University of Minnesota, 2003 Upper Buford Circle, St. Paul, Minnesota, 55108, USA.
Ecol Appl. 2017 Jan;27(1):182-192. doi: 10.1002/eap.1421. Epub 2016 Dec 14.
Age at maturity (AAM) is a key life history trait that provides insight into ecology, evolution, and population dynamics. However, maturity data can be costly to collect or may not be available. Life history theory suggests that growth is biphasic for many organisms, with a change-point in growth occurring at maturity. If so, then it should be possible to use a biphasic growth model to estimate AAM from growth data. To test this prediction, we used the Lester biphasic growth model in a likelihood profiling framework to estimate AAM from length at age data. We fit our model to simulated growth trajectories to determine minimum data requirements (in terms of sample size, precision in length at age, and the cost to somatic growth of maturity) for accurate AAM estimates. We then applied our method to a large walleye Sander vitreus data set and show that our AAM estimates are in close agreement with conventional estimates when our model fits well. Finally, we highlight the potential of our method by applying it to length at age data for a variety of ectotherms. Our method shows promise as a tool for estimating AAM and other life history traits from contemporary and historical samples.
成熟年龄 (AAM) 是一个关键的生活史特征,它提供了对生态学、进化和种群动态的深入了解。然而,成熟数据的收集可能成本高昂,或者可能不可用。生命史理论表明,许多生物体的生长是双相的,在成熟时发生生长转折点。如果是这样,那么应该可以使用双相生长模型从生长数据估计 AAM。为了验证这一预测,我们使用莱斯特双相生长模型在似然分析框架中,从年龄与长度数据来估计 AAM。我们拟合我们的模型到模拟的生长轨迹,以确定准确估计 AAM 的最小数据要求(在样本量、年龄与长度的精度和成熟对躯体生长的成本方面)。然后,我们将我们的方法应用于一个大型的北美狗鱼的数据集,并表明当我们的模型拟合良好时,我们的 AAM 估计值与传统的估计值非常吻合。最后,我们通过将其应用于各种变温动物的年龄与长度数据来突出我们方法的潜力。我们的方法有望成为从现代和历史样本中估计 AAM 和其他生活史特征的工具。