Suppr超能文献

七鳃鳗游泳时的弯曲运动学如何构建用于吸力推进的负压场。

How the bending kinematics of swimming lampreys build negative pressure fields for suction thrust.

作者信息

Gemmell Brad J, Fogerson Stephanie M, Costello John H, Morgan Jennifer R, Dabiri John O, Colin Sean P

机构信息

Department of Integrative Biology, University of South Florida, Tampa, FL 33620, USA.

The Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, MA 02543, USA.

出版信息

J Exp Biol. 2016 Dec 15;219(Pt 24):3884-3895. doi: 10.1242/jeb.144642.

Abstract

Swimming animals commonly bend their bodies to generate thrust. For undulating animals such as eels and lampreys, their bodies bend in the form of waves that travel from head to tail. These kinematics accelerate the flow of adjacent fluids, which alters the pressure field in a manner that generates thrust. We used a comparative approach to evaluate the cause-and-effect relationships in this process by quantifying the hydrodynamic effects of body kinematics at the body-fluid interface of the lamprey, Petromyzon marinus, during steady-state swimming. We compared the kinematics and hydrodynamics of healthy control lampreys to lampreys whose spinal cord had been transected mid-body, resulting in passive kinematics along the posterior half of their body. Using high-speed particle image velocimetry (PIV) and a method for quantifying pressure fields, we detail how the active bending kinematics of the control lampreys were crucial for setting up strong negative pressure fields (relative to ambient fields) that generated high-thrust regions at the bends as they traveled all along the body. The passive kinematics of the transected lamprey were only able to generate significant thrust at the tail, relying on positive pressure fields. These different pressure and thrust scenarios are due to differences in how active versus passive body waves generated and controlled vorticity. This demonstrates why it is more effective for undulating lampreys to pull, rather than push, themselves through the fluid.

摘要

游动的动物通常会弯曲身体来产生推力。对于像鳗鱼和七鳃鳗这样通过身体波动游动的动物来说,它们的身体会以从头部向尾部传播的波浪形式弯曲。这些运动学特征加速了相邻流体的流动,进而以产生推力的方式改变了压力场。我们采用了一种比较方法,通过量化在稳态游动过程中,海七鳃鳗(Petromyzon marinus)身体与流体界面处身体运动学的流体动力学效应,来评估这一过程中的因果关系。我们将健康对照七鳃鳗的运动学和流体动力学与脊髓在身体中部被横切的七鳃鳗进行了比较,横切后的七鳃鳗身体后半部分呈现被动运动学特征。利用高速粒子图像测速技术(PIV)和一种量化压力场的方法,我们详细阐述了对照七鳃鳗的主动弯曲运动学特征对于建立强大的负压场(相对于周围环境场)至关重要,这些负压场在沿着身体传播时,在弯曲处产生了高推力区域。横切七鳃鳗的被动运动学特征仅能在尾部依靠正压场产生显著的推力。这些不同的压力和推力情况是由于主动与被动身体波浪产生和控制涡度的方式不同所致。这证明了为什么对于波动游动的七鳃鳗来说,在流体中拉动自身比推动自身更有效。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验