Sayahkarajy Mostafa, Witte Hartmut
Group of Biomechatronics, Fachgebiet Biomechatronik, Technische Universität Ilmenau, D-98693 Ilmenau, Germany.
Biomimetics (Basel). 2025 Jan 16;10(1):60. doi: 10.3390/biomimetics10010060.
Anguilliform locomotion, an efficient aquatic locomotion mode where the whole body is engaged in fluid-body interaction, contains sophisticated physics. We hypothesized that data-driven modeling techniques may extract models or patterns of the swimmers' dynamics without implicitly measuring the hydrodynamic variables. This work proposes empirical kinematic control and data-driven modeling of a soft swimming robot. The robot comprises six serially connected segments that can individually bend with the segmental pneumatic artificial muscles. Kinematic equations and relations are proposed to measure the desired actuation to mimic anguilliform locomotion kinematics. The robot was tested experimentally and the position and velocities of spatially digitized points were collected using QualiSys Tracking Manager (QTM) 1.6.0.1. The collected data were analyzed offline, proposing a new complex variable delay-embedding dynamic mode decomposition (CDE DMD) algorithm that combines complex state filtering and time embedding to extract a linear approximate model. While the experimental results exhibited exotic curves in phase plane and time series, the analysis results showed that the proposed algorithm extracts linear and chaotic modes contributing to the data. It is concluded that the robot dynamics can be described by the linearized model interrupted by chaotic modes. The technique successfully extracts coherent modes from limited measurements and linearizes the system dynamics.
鳗鲡状运动是一种高效的水生运动模式,整个身体都参与流体与身体的相互作用,其中包含复杂的物理学原理。我们假设数据驱动的建模技术可以提取游泳者动力学的模型或模式,而无需隐式测量流体动力学变量。这项工作提出了一种软质游泳机器人的经验运动控制和数据驱动建模方法。该机器人由六个串联的节段组成,这些节段可以通过节段式气动人工肌肉单独弯曲。提出了运动学方程和关系来测量所需的驱动,以模仿鳗鲡状运动的运动学。对该机器人进行了实验测试,并使用QualiSys Tracking Manager (QTM) 1.6.0.1收集了空间数字化点的位置和速度。对收集到的数据进行离线分析,提出了一种新的复变量延迟嵌入动态模式分解(CDE DMD)算法,该算法结合了复状态滤波和时间嵌入来提取线性近似模型。虽然实验结果在相平面和时间序列中呈现出奇异曲线,但分析结果表明,所提出的算法提取了对数据有贡献的线性和混沌模式。得出的结论是,机器人动力学可以用由混沌模式中断的线性化模型来描述。该技术成功地从有限的测量中提取了相干模式,并将系统动力学线性化。