Suppr超能文献

抑制脂肪组织中的过氧化物酶体增殖物激活受体γ(PPARγ)可阻止抽脂术后脂肪细胞扩张增加,并加重葡萄糖不耐受表型。

Inhibition of adipose tissue PPARγ prevents increased adipocyte expansion after lipectomy and exacerbates a glucose-intolerant phenotype.

作者信息

Booth A D, Magnuson A M, Cox-York K A, Wei Y, Wang D, Pagliassotti M J, Foster M T

机构信息

Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, Colorado, USA.

出版信息

Cell Prolif. 2017 Apr;50(2). doi: 10.1111/cpr.12325. Epub 2016 Dec 15.

Abstract

OBJECTIVES

Adipose tissue plays a fundamental role in glucose homeostasis. For example, fat removal (lipectomy, LipX) in lean mice, resulting in a compensatory 50% increase in total fat mass, is associated with significant improvement in glucose tolerance. This study was designed to further examine the link between fat removal, adipose tissue compensation and glucose homeostasis using a peroxisome proliferator-activated receptor γ (PPAR γ; activator of adipogenesis) knockout mouse.

MATERIAL AND METHODS

The study involved PPARγ knockout (FKOγ) or control mice (CON), subdivided into groups that received LipX or Sham surgery. We reasoned that as the ability of adipose tissue to expand in response to LipX would be compromised in FKOγ mice, so would improvements in glucose homeostasis.

RESULTS

In CON mice, LipX increased total adipose depot mass (60%), adipocyte number (45%) and changed adipocyte distribution to smaller cells. Glucose tolerance was improved (30%) in LipX CON mice compared to Shams. In FKOγ mice, LipX did not result in any significant changes in adipose depot mass, adipocyte number or distribution. LipX FKOγ mice were also characterized by reduction of glucose tolerance (30%) compared to shams.

CONCLUSIONS

Inhibition of adipose tissue PPARγ prevented LipX-induced increases in adipocyte expansion and produced a glucose-intolerant phenotype. These data support the notion that adipose tissue expansion is critical to maintain and/or improvement in glucose homeostasis.

摘要

目的

脂肪组织在葡萄糖稳态中起重要作用。例如,在瘦小鼠中进行脂肪去除(抽脂术,LipX),导致总脂肪量代偿性增加50%,这与葡萄糖耐量的显著改善有关。本研究旨在使用过氧化物酶体增殖物激活受体γ(PPARγ;脂肪生成激活剂)基因敲除小鼠,进一步研究脂肪去除、脂肪组织代偿与葡萄糖稳态之间的联系。

材料与方法

该研究涉及PPARγ基因敲除(FKOγ)小鼠或对照小鼠(CON),再细分为接受LipX或假手术的组。我们推断,由于FKOγ小鼠中脂肪组织对LipX作出反应而扩张的能力会受到损害,葡萄糖稳态的改善也会如此。

结果

在CON小鼠中,LipX增加了总脂肪储存量(约60%)、脂肪细胞数量(约45%),并使脂肪细胞分布转变为较小的细胞。与假手术组相比,LipX CON小鼠的葡萄糖耐量提高了(约30%)。在FKOγ小鼠中,LipX并未导致脂肪储存量、脂肪细胞数量或分布发生任何显著变化。与假手术组相比,LipX FKOγ小鼠还表现出葡萄糖耐量降低(约30%)。

结论

抑制脂肪组织PPARγ可阻止LipX诱导的脂肪细胞扩张增加,并产生葡萄糖不耐受表型。这些数据支持了脂肪组织扩张对于维持和/或改善葡萄糖稳态至关重要的观点。

相似文献

2
Targeted Deletion of Adipocyte Abca1 (ATP-Binding Cassette Transporter A1) Impairs Diet-Induced Obesity.
Arterioscler Thromb Vasc Biol. 2018 Apr;38(4):733-743. doi: 10.1161/ATVBAHA.117.309880. Epub 2018 Jan 18.
3
Lack of CUL4B in Adipocytes Promotes PPARγ-Mediated Adipose Tissue Expansion and Insulin Sensitivity.
Diabetes. 2017 Feb;66(2):300-313. doi: 10.2337/db16-0743. Epub 2016 Nov 29.
9
Increasing adipocyte lipoprotein lipase improves glucose metabolism in high fat diet-induced obesity.
J Biol Chem. 2015 May 1;290(18):11547-56. doi: 10.1074/jbc.M114.628487. Epub 2015 Mar 17.
10
Adipocyte-specific Hypoxia-inducible gene 2 promotes fat deposition and diet-induced insulin resistance.
Mol Metab. 2016 Sep 28;5(12):1149-1161. doi: 10.1016/j.molmet.2016.09.009. eCollection 2016 Dec.

本文引用的文献

1
Increased fat cell size: a major phenotype of subcutaneous white adipose tissue in non-obese individuals with type 2 diabetes.
Diabetologia. 2016 Mar;59(3):560-70. doi: 10.1007/s00125-015-3810-6. Epub 2015 Nov 25.
2
The cell size and distribution of adipocytes from subcutaneous and visceral fat is associated with type 2 diabetes mellitus in humans.
Adipocyte. 2015 Apr 1;4(4):273-9. doi: 10.1080/21623945.2015.1034920. eCollection 2015 Oct-Dec.
3
Loss of white adipose hyperplastic potential is associated with enhanced susceptibility to insulin resistance.
Cell Metab. 2014 Dec 2;20(6):1049-58. doi: 10.1016/j.cmet.2014.10.010. Epub 2014 Nov 20.
4
Induction of adipocyte hyperplasia in subcutaneous fat depot alleviated type 2 diabetes symptoms in obese mice.
Obesity (Silver Spring). 2014 Jul;22(7):1623-31. doi: 10.1002/oby.20705. Epub 2014 Feb 11.
5
Body fat distribution and insulin resistance.
Nutrients. 2013 Jun 5;5(6):2019-27. doi: 10.3390/nu5062019.
6
Mapping body fat distribution: a key step towards the identification of the vulnerable patient?
Ann Med. 2012 Dec;44(8):758-72. doi: 10.3109/07853890.2011.605387. Epub 2011 Dec 12.
7
Regulation of lipolysis in small and large fat cells of the same subject.
J Clin Endocrinol Metab. 2011 Dec;96(12):E2045-9. doi: 10.1210/jc.2011-1702. Epub 2011 Oct 12.
8
Preferential fat deposition in subcutaneous versus visceral depots is associated with insulin sensitivity.
J Clin Endocrinol Metab. 2011 Nov;96(11):E1756-60. doi: 10.1210/jc.2011-0615. Epub 2011 Aug 24.
9
Origins of metabolic complications in obesity: adipose tissue and free fatty acid trafficking.
Curr Opin Clin Nutr Metab Care. 2011 Nov;14(6):535-41. doi: 10.1097/MCO.0b013e32834ad8b6.
10
Removal of intra-abdominal visceral adipose tissue improves glucose tolerance in rats: role of hepatic triglyceride storage.
Physiol Behav. 2011 Oct 24;104(5):845-54. doi: 10.1016/j.physbeh.2011.04.064. Epub 2011 Jun 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验