Suppr超能文献

N,C-封端二肽与结核分枝杆菌蛋白酶体的物种选择性结合的结构基础

Structural Basis for the Species-Selective Binding of N,C-Capped Dipeptides to the Mycobacterium tuberculosis Proteasome.

作者信息

Hsu Hao-Chi, Singh Pradeep K, Fan Hao, Wang Rong, Sukenick George, Nathan Carl, Lin Gang, Li Huilin

机构信息

Van Andel Research Institute , Grand Rapids, Michigan 49503, United States.

NMR Analytical Core Facility, Memorial Sloan Kettering Cancer Center , New York, New York 10065, United States.

出版信息

Biochemistry. 2017 Jan 10;56(1):324-333. doi: 10.1021/acs.biochem.6b01107. Epub 2016 Dec 27.

Abstract

The Mycobacterium tuberculosis (Mtb) 20S proteasome is vital for the pathogen to survive under nitrosative stress in vitro and to persist in mice. To qualify for drug development, inhibitors targeting Mtb 20S must spare both the human constitutive proteasome (c-20S) and immunoproteasome (i-20S). We recently reported members of a family of noncovalently binding dipeptide proteasome inhibitors that are highly potent and selective for Mtb 20S over human c-20S and i-20S. To understand the structural basis of their potency and selectivity, we have studied the structure-activity relationship of six derivatives and solved their cocrystal structures with Mtb 20S. The dipeptide inhibitors form an antiparallel β-strand with the active site β-strands. Selectivity is conferred by several features of Mtb 20S relative to its mouse counterparts, including a larger S1 pocket, additional hydrogen bonds in the S3 pocket, and hydrophobic interactions in the S4 pocket. Serine-20 and glutamine-22 of Mtb 20S interact with the dipeptides and confer Mtb-specific inhibition over c-20S and i-20S. The Mtb 20S and mammalian i-20S have a serine-27 that interacts strongly with the dipeptides, potentially explaining the higher inhibitory activity of the dipeptides toward i-20S over c-20S. This detailed structural knowledge will aid in optimizing the dipeptides as anti-tuberculosis drugs.

摘要

结核分枝杆菌(Mtb)的20S蛋白酶体对于该病原体在体外亚硝化应激下存活以及在小鼠体内持续存在至关重要。为了符合药物开发的要求,靶向Mtb 20S的抑制剂必须同时保留人类组成型蛋白酶体(c - 20S)和免疫蛋白酶体(i - 20S)。我们最近报道了一类非共价结合的二肽蛋白酶体抑制剂家族成员,它们对Mtb 20S的效力和选择性远高于人类c - 20S和i - 20S。为了理解其效力和选择性的结构基础,我们研究了六种衍生物的构效关系,并解析了它们与Mtb 20S的共晶体结构。二肽抑制剂与活性位点的β链形成反平行β链。相对于小鼠的对应物,Mtb 20S的几个特征赋予了其选择性,包括更大的S1口袋、S3口袋中的额外氢键以及S4口袋中的疏水相互作用。Mtb 20S的丝氨酸 - 20和谷氨酰胺 - 22与二肽相互作用,并赋予对c - 20S和i - 20S的Mtb特异性抑制作用。Mtb 20S和哺乳动物i - 20S都有一个丝氨酸 - 27,它与二肽强烈相互作用,这可能解释了二肽对i - 20S的抑制活性高于c - 20S的原因。这一详细的结构知识将有助于优化二肽作为抗结核药物。

相似文献

1
Structural Basis for the Species-Selective Binding of N,C-Capped Dipeptides to the Mycobacterium tuberculosis Proteasome.
Biochemistry. 2017 Jan 10;56(1):324-333. doi: 10.1021/acs.biochem.6b01107. Epub 2016 Dec 27.
2
Structure-Activity Relationships of Noncovalent Immunoproteasome β5i-Selective Dipeptides.
J Med Chem. 2020 Nov 12;63(21):13103-13123. doi: 10.1021/acs.jmedchem.0c01520. Epub 2020 Oct 23.
3
N,C-Capped dipeptides with selectivity for mycobacterial proteasome over human proteasomes: role of S3 and S1 binding pockets.
J Am Chem Soc. 2013 Jul 10;135(27):9968-71. doi: 10.1021/ja400021x. Epub 2013 Jun 25.
4
Terminal functionalized thiourea-containing dipeptides as multidrug-resistance reversers that target 20S proteasome and cell proliferation.
Eur J Med Chem. 2017 Jan 27;126:259-269. doi: 10.1016/j.ejmech.2016.11.024. Epub 2016 Nov 11.
5
Structure of the Mycobacterium tuberculosis proteasome and mechanism of inhibition by a peptidyl boronate.
Mol Microbiol. 2006 Mar;59(5):1417-28. doi: 10.1111/j.1365-2958.2005.05036.x.
6
Macrocyclic Peptides that Selectively Inhibit the Proteasome.
J Med Chem. 2021 May 13;64(9):6262-6272. doi: 10.1021/acs.jmedchem.1c00296. Epub 2021 May 5.
7
Rational Design of Selective and Bioactive Inhibitors of the Mycobacterium tuberculosis Proteasome.
ACS Infect Dis. 2017 Feb 10;3(2):176-181. doi: 10.1021/acsinfecdis.6b00172. Epub 2016 Dec 5.
8
Phenoxypropanolamine derivatives as selective inhibitors of the 20S proteasome β1 and β5 subunits.
Bioorg Med Chem Lett. 2017 Dec 1;27(23):5172-5178. doi: 10.1016/j.bmcl.2017.10.055. Epub 2017 Oct 23.
9
Studies of C-terminal naphthoquinone dipeptides as 20S proteasome inhibitors.
J Enzyme Inhib Med Chem. 2016;31(3):456-63. doi: 10.3109/14756366.2015.1037749. Epub 2015 May 5.
10
Immunoproteasome β5i-Selective Dipeptidomimetic Inhibitors.
ChemMedChem. 2016 Oct 6;11(19):2127-2131. doi: 10.1002/cmdc.201600384. Epub 2016 Aug 25.

引用本文的文献

1
Design, Synthesis, and Optimization of Macrocyclic Peptides as Species-Selective Antimalaria Proteasome Inhibitors.
J Med Chem. 2022 Jul 14;65(13):9350-9375. doi: 10.1021/acs.jmedchem.2c00611. Epub 2022 Jun 21.
2
Mechanistic and thermodynamic characterization of oxathiazolones as potent and selective covalent immunoproteasome inhibitors.
Comput Struct Biotechnol J. 2021 Aug 9;19:4486-4496. doi: 10.1016/j.csbj.2021.08.008. eCollection 2021.
3
Macrocyclic Peptides that Selectively Inhibit the Proteasome.
J Med Chem. 2021 May 13;64(9):6262-6272. doi: 10.1021/acs.jmedchem.1c00296. Epub 2021 May 5.
4
Proteasome, a Promising Therapeutic Target for Multiple Diseases Beyond Cancer.
Drug Des Devel Ther. 2020 Oct 19;14:4327-4342. doi: 10.2147/DDDT.S265793. eCollection 2020.
5
Structure-Activity Relationships of Noncovalent Immunoproteasome β5i-Selective Dipeptides.
J Med Chem. 2020 Nov 12;63(21):13103-13123. doi: 10.1021/acs.jmedchem.0c01520. Epub 2020 Oct 23.
6
Psoralen Derivatives as Inhibitors of Proteasome.
Molecules. 2020 Mar 12;25(6):1305. doi: 10.3390/molecules25061305.
7
Selective Phenylimidazole-Based Inhibitors of the Proteasome.
J Med Chem. 2019 Oct 24;62(20):9246-9253. doi: 10.1021/acs.jmedchem.9b01187. Epub 2019 Oct 15.
8
The proteasome as a target to combat malaria: hits and misses.
Transl Res. 2018 Aug;198:40-47. doi: 10.1016/j.trsl.2018.04.007. Epub 2018 May 3.
9
Antimalarial proteasome inhibitor reveals collateral sensitivity from intersubunit interactions and fitness cost of resistance.
Proc Natl Acad Sci U S A. 2018 Jul 17;115(29):E6863-E6870. doi: 10.1073/pnas.1806109115. Epub 2018 Jul 2.
10
Targeting the Proteostasis Network for Mycobacterial Drug Discovery.
ACS Infect Dis. 2018 Apr 13;4(4):478-498. doi: 10.1021/acsinfecdis.7b00231. Epub 2018 Mar 2.

本文引用的文献

1
Structural Analysis of the Bacterial Proteasome Activator Bpa in Complex with the 20S Proteasome.
Structure. 2016 Dec 6;24(12):2138-2151. doi: 10.1016/j.str.2016.10.008. Epub 2016 Nov 10.
2
A humanized yeast proteasome identifies unique binding modes of inhibitors for the immunosubunit β5i.
EMBO J. 2016 Dec 1;35(23):2602-2613. doi: 10.15252/embj.201695222. Epub 2016 Oct 27.
3
Immunoproteasome β5i-Selective Dipeptidomimetic Inhibitors.
ChemMedChem. 2016 Oct 6;11(19):2127-2131. doi: 10.1002/cmdc.201600384. Epub 2016 Aug 25.
4
Proteasome inhibition for treatment of leishmaniasis, Chagas disease and sleeping sickness.
Nature. 2016 Sep 8;537(7619):229-233. doi: 10.1038/nature19339. Epub 2016 Aug 8.
5
Structural analysis of the dodecameric proteasome activator PafE in Mycobacterium tuberculosis.
Proc Natl Acad Sci U S A. 2016 Apr 5;113(14):E1983-92. doi: 10.1073/pnas.1512094113. Epub 2016 Mar 21.
6
Systematic Analyses of Substrate Preferences of 20S Proteasomes Using Peptidic Epoxyketone Inhibitors.
J Am Chem Soc. 2015 Jun 24;137(24):7835-42. doi: 10.1021/jacs.5b03688. Epub 2015 Jun 11.
7
An adenosine triphosphate-independent proteasome activator contributes to the virulence of Mycobacterium tuberculosis.
Proc Natl Acad Sci U S A. 2015 Apr 7;112(14):E1763-72. doi: 10.1073/pnas.1423319112. Epub 2015 Mar 23.
8
Crystal structure of the human 20S proteasome in complex with carfilzomib.
Structure. 2015 Feb 3;23(2):418-24. doi: 10.1016/j.str.2014.11.017. Epub 2015 Jan 15.
9
Bacterial proteasome activator bpa (rv3780) is a novel ring-shaped interactor of the mycobacterial proteasome.
PLoS One. 2014 Dec 3;9(12):e114348. doi: 10.1371/journal.pone.0114348. eCollection 2014.
10
Regulation of proteasome activity in health and disease.
Biochim Biophys Acta. 2014 Jan;1843(1):13-25. doi: 10.1016/j.bbamcr.2013.08.012. Epub 2013 Aug 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验