Myers Rupert J, Geng Guoqing, Li Jiaqi, Rodríguez Erich D, Ha Juyoung, Kidkhunthod Pinit, Sposito Garrison, Lammers Laura N, Kirchheim Ana Paula, Monteiro Paulo J M
Department of Civil and Environmental Engineering, University of California , Berkeley, California United States.
Yale School of Forestry & Environmental Studies, Yale University , 195 Prospect Street, New Haven, Connecticut 06511, United States.
Langmuir. 2017 Jan 10;33(1):45-55. doi: 10.1021/acs.langmuir.6b03474. Epub 2016 Dec 15.
The workability of fresh Portland cement (PC) concrete critically depends on the reaction of the cubic tricalcium aluminate (CA) phase in Ca- and S-rich pH >12 aqueous solution, yet its rate-controlling mechanism is poorly understood. In this article, the role of adsorption phenomena in CA dissolution in aqueous Ca-, S-, and polynaphthalene sulfonate (PNS)-containing solutions is analyzed. The zeta potential and pH results are consistent with the isoelectric point of CA occurring at pH ∼12 and do not show an inversion of its electric double layer potential as a function of S or Ca concentration, and PNS adsorbs onto CA, reducing its zeta potential to negative values at pH >12. The S and Ca K-edge X-ray absorption spectroscopy (XAS) data obtained do not indicate the structural incorporation or specific adsorption of SO on the partially dissolved CA solids analyzed. Together with supporting X-ray ptychography and scanning electron microscopy results, a model for CA dissolution inhibition in hydrated PC systems is proposed whereby the formation of an Al-rich leached layer and the complexation of Ca-S ion pairs onto this leached layer provide the key inhibiting effect(s). This model reconciles the results obtained here with the existing literature, including the inhibiting action of macromolecules such as PNS and polyphosphonic acids upon CA dissolution. Therefore, this article advances the understanding of the rate-controlling mechanism in hydrated CA and thus PC systems, which is important to better controlling the workability of fresh PC concrete.
新鲜波特兰水泥(PC)混凝土的工作性关键取决于立方铝酸三钙(CA)相在富含钙和硫且pH>12的水溶液中的反应,但其速率控制机制却鲜为人知。本文分析了吸附现象在含Ca、S和聚萘磺酸盐(PNS)的水溶液中CA溶解过程中的作用。ζ电位和pH值结果与CA在pH约为12时的等电点一致,并且未显示其双电层电位随S或Ca浓度的变化而反转,且PNS吸附在CA上,在pH>12时将其ζ电位降低至负值。所获得的S和Ca K边X射线吸收光谱(XAS)数据并未表明在所分析的部分溶解的CA固体上存在SO的结构掺入或特异性吸附。结合支持性的X射线叠层成像和扫描电子显微镜结果,提出了一种水合PC系统中CA溶解抑制模型,即富含Al的浸出层的形成以及Ca-S离子对在该浸出层上的络合提供了关键的抑制作用。该模型将此处获得的结果与现有文献进行了协调,包括PNS和聚膦酸等大分子对CA溶解的抑制作用。因此,本文推进了对水合CA以及PC系统中速率控制机制的理解,这对于更好地控制新鲜PC混凝土的工作性很重要。