Suppr超能文献

确定第七颈椎棘突:使用触诊和个人信息开发及验证多变量模型

Locating the Seventh Cervical Spinous Process: Development and Validation of a Multivariate Model Using Palpation and Personal Information.

作者信息

Ferreira Ana Paula A, Póvoa Luciana C, Zanier José F C, Ferreira Arthur S

机构信息

Postgraduate Program in Rehabilitation Sciences, Centro Universitário Augusto Motta (UNISUAM), Rio de Janeiro, Brazil.

Pedro Ernesto University Hospital, Rio de Janeiro State University, Rio de Janeiro, Brazil.

出版信息

J Manipulative Physiol Ther. 2017 Feb;40(2):89-97. doi: 10.1016/j.jmpt.2016.10.012. Epub 2016 Dec 13.

Abstract

OBJECTIVE

The aim of this study was to develop and validate a multivariate prediction model, guided by palpation and personal information, for locating the seventh cervical spinous process (C7SP).

METHODS

A single-blinded, cross-sectional study at a primary to tertiary health care center was conducted for model development and temporal validation. One-hundred sixty participants were prospectively included for model development (n = 80) and time-split validation stages (n = 80). The C7SP was located using the thorax-rib static method (TRSM). Participants underwent chest radiography for assessment of the inner body structure located with TRSM and using radio-opaque markers placed over the skin. Age, sex, height, body mass, body mass index, and vertex-marker distance (D) were used to predict the distance from the C7SP to the vertex (D). Multivariate linear regression modeling, limits of agreement plot, histogram of residues, receiver operating characteristic curves, and confusion tables were analyzed.

RESULTS

The multivariate linear prediction model for D (in centimeters) was D = 0.986D + 0.018(mass) + 0.014(age) - 1.008. Receiver operating characteristic curves had better discrimination of D (area under the curve = 0.661; 95% confidence interval = 0.541-0.782; P = .015) than D (area under the curve = 0.480; 95% confidence interval = 0.345-0.614; P = .761), with respective cutoff points at 23.40 cm (sensitivity = 41%, specificity = 63%) and 24.75 cm (sensitivity = 69%, specificity = 52%). The C7SP was correctly located more often when using predicted D in the validation sample than when using the TRSM in the development sample: n = 53 (66%) vs n = 32 (40%), P < .001.

CONCLUSIONS

Better accuracy was obtained when locating the C7SP by use of a multivariate model that incorporates palpation and personal information.

摘要

目的

本研究旨在开发并验证一种基于触诊和个人信息的多变量预测模型,用于定位第七颈椎棘突(C7SP)。

方法

在一家初级至三级医疗保健中心进行了一项单盲横断面研究,用于模型开发和时间验证。前瞻性纳入160名参与者,分为模型开发组(n = 80)和时间分割验证组(n = 80)。使用胸廓肋骨静态法(TRSM)定位C7SP。参与者接受胸部X线摄影,以评估通过TRSM定位的体内结构,并在皮肤上放置不透射线的标记物。使用年龄、性别、身高、体重、体重指数和顶点标记距离(D)来预测从C7SP到顶点的距离(D)。分析了多变量线性回归模型、一致性界限图、残差直方图、受试者工作特征曲线和混淆表。

结果

D(以厘米为单位)的多变量线性预测模型为D = 0.986D + 0.018(体重)+ 0.014(年龄) - 1.008。受试者工作特征曲线对D的辨别能力(曲线下面积 = 0.661;95%置信区间 = 0.541 - 0.782;P = 0.015)优于对D的辨别能力(曲线下面积 = 0.480;95%置信区间 = 0.345 - 0.614;P = 0.761),各自的截断点分别为23.40厘米(敏感性 = 41%,特异性 = 63%)和24.75厘米(敏感性 = 69%,特异性 = 52%)。在验证样本中使用预测的D定位C7SP比在开发样本中使用TRSM更常正确定位:n = 53(66%)对n = 32(40%),P < 0.001。

结论

使用结合触诊和个人信息的多变量模型定位C7SP时,准确性更高。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验