Suppr超能文献

使用放射基因组生物标志物进行介入试验的优化设计和患者选择:REQUITE与放射基因组学联盟声明

Optimal design and patient selection for interventional trials using radiogenomic biomarkers: A REQUITE and Radiogenomics consortium statement.

作者信息

De Ruysscher Dirk, Defraene Gilles, Ramaekers Bram L T, Lambin Philippe, Briers Erik, Stobart Hilary, Ward Tim, Bentzen Søren M, Van Staa Tjeerd, Azria David, Rosenstein Barry, Kerns Sarah, West Catharine

机构信息

Maastricht University Medical Center, Department of Radiation Oncology (MAASTRO Clinic), The Netherlands; KU Leuven, Radiation Oncology, Belgium.

KU Leuven, Radiation Oncology, Belgium.

出版信息

Radiother Oncol. 2016 Dec;121(3):440-446. doi: 10.1016/j.radonc.2016.11.003. Epub 2016 Dec 12.

Abstract

The optimal design and patient selection for interventional trials in radiogenomics seem trivial at first sight. However, radiogenomics do not give binary information like in e.g. targetable mutation biomarkers. Here, the risk to develop severe side effects is continuous, with increasing incidences of side effects with higher doses and/or volumes. In addition, a multi-SNP assay will produce a predicted probability of developing side effects and will require one or more cut-off thresholds for classifying risk into discrete categories. A classical biomarker trial design is therefore not optimal, whereas a risk factor stratification approach is more appropriate. Patient selection is crucial and this should be based on the dose-response relations for a specific endpoint. Alternatives to standard treatment should be available and this should take into account the preferences of patients. This will be discussed in detail.

摘要

放射基因组学介入试验的最佳设计和患者选择乍一看似乎很简单。然而,放射基因组学不像例如可靶向突变生物标志物那样提供二元信息。在这里,发生严重副作用的风险是连续的,随着剂量和/或体积的增加,副作用的发生率也会增加。此外,多单核苷酸多态性分析将产生发生副作用的预测概率,并且需要一个或多个截止阈值来将风险分类为离散类别。因此,经典的生物标志物试验设计并非最佳,而风险因素分层方法更为合适。患者选择至关重要,这应基于特定终点的剂量反应关系。应该有标准治疗的替代方案,并且这应该考虑到患者的偏好。这将进行详细讨论。

相似文献

2
Radiogenomics: Identification of Genomic Predictors for Radiation Toxicity.
Semin Radiat Oncol. 2017 Oct;27(4):300-309. doi: 10.1016/j.semradonc.2017.04.005.
3
Radiogenomics and IR.
J Vasc Interv Radiol. 2018 May;29(5):706-713. doi: 10.1016/j.jvir.2017.11.021. Epub 2018 Mar 15.
4
Radiogenomics - current status, challenges and future directions.
Cancer Lett. 2016 Nov 1;382(1):127-136. doi: 10.1016/j.canlet.2016.01.035. Epub 2016 Jan 28.
5
Radiogenomics: using genetics to identify cancer patients at risk for development of adverse effects following radiotherapy.
Cancer Discov. 2014 Feb;4(2):155-65. doi: 10.1158/2159-8290.CD-13-0197. Epub 2014 Jan 17.
6
Radiogenomics: radiobiology enters the era of big data and team science.
Int J Radiat Oncol Biol Phys. 2014 Jul 15;89(4):709-13. doi: 10.1016/j.ijrobp.2014.03.009.
7
Radiogenomics: towards a personalized radiation oncology.
Curr Opin Pediatr. 2016 Dec;28(6):713-717. doi: 10.1097/MOP.0000000000000408.
8
Radiogenomics: A systems biology approach to understanding genetic risk factors for radiotherapy toxicity?
Cancer Lett. 2016 Nov 1;382(1):95-109. doi: 10.1016/j.canlet.2016.02.035. Epub 2016 Mar 2.
9
The Patient Perspective on Radiogenomics Testing for Breast Radiation Toxicity.
Clin Oncol (R Coll Radiol). 2018 Mar;30(3):151-157. doi: 10.1016/j.clon.2017.12.001. Epub 2017 Dec 26.
10
Radiogenomics: the search for genetic predictors of radiotherapy response.
Future Oncol. 2014 Dec;10(15):2391-406. doi: 10.2217/fon.14.173.

引用本文的文献

1
A Polygenic Risk Score for Late Bladder Toxicity Following Radiotherapy for Non-Metastatic Prostate Cancer.
Cancer Epidemiol Biomarkers Prev. 2025 May 2;34(5):795-804. doi: 10.1158/1055-9965.EPI-24-1228.
2
Moving the Needle Forward in Genomically-Guided Precision Radiation Treatment.
Cancers (Basel). 2023 Nov 7;15(22):5314. doi: 10.3390/cancers15225314.
7
Radiation-Induced Lung Injury (RILI).
Front Oncol. 2019 Sep 6;9:877. doi: 10.3389/fonc.2019.00877. eCollection 2019.
8
Radiogenomics: Identification of Genomic Predictors for Radiation Toxicity.
Semin Radiat Oncol. 2017 Oct;27(4):300-309. doi: 10.1016/j.semradonc.2017.04.005.
9
Data-Based Radiation Oncology: Design of Clinical Trials in the Toxicity Biomarkers Era.
Front Oncol. 2017 Apr 27;7:83. doi: 10.3389/fonc.2017.00083. eCollection 2017.

本文引用的文献

2
Radiogenomics: A systems biology approach to understanding genetic risk factors for radiotherapy toxicity?
Cancer Lett. 2016 Nov 1;382(1):95-109. doi: 10.1016/j.canlet.2016.02.035. Epub 2016 Mar 2.
3
Radiogenomics - current status, challenges and future directions.
Cancer Lett. 2016 Nov 1;382(1):127-136. doi: 10.1016/j.canlet.2016.01.035. Epub 2016 Jan 28.
4
Decision support systems for personalized and participative radiation oncology.
Adv Drug Deliv Rev. 2017 Jan 15;109:131-153. doi: 10.1016/j.addr.2016.01.006. Epub 2016 Jan 14.
6
The Prediction of Radiotherapy Toxicity Using Single Nucleotide Polymorphism-Based Models: A Step Toward Prevention.
Semin Radiat Oncol. 2015 Oct;25(4):281-91. doi: 10.1016/j.semradonc.2015.05.006. Epub 2015 May 15.
7
CT characteristics allow identification of patient-specific susceptibility for radiation-induced lung damage.
Radiother Oncol. 2015 Oct;117(1):29-35. doi: 10.1016/j.radonc.2015.07.033. Epub 2015 Aug 6.
8
Incorporating Genetic Biomarkers into Predictive Models of Normal Tissue Toxicity.
Clin Oncol (R Coll Radiol). 2015 Oct;27(10):579-87. doi: 10.1016/j.clon.2015.06.013. Epub 2015 Jul 10.
10
New approaches to radiation protection.
Front Oncol. 2015 Jan 20;4:381. doi: 10.3389/fonc.2014.00381. eCollection 2014.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验