Suppr超能文献

放射组学:识别放射性毒性的基因组预测因子。

Radiogenomics: Identification of Genomic Predictors for Radiation Toxicity.

机构信息

Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, NY; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY.

出版信息

Semin Radiat Oncol. 2017 Oct;27(4):300-309. doi: 10.1016/j.semradonc.2017.04.005.

Abstract

The overall goal of radiogenomics is the identification of genomic markers that are predictive for the development of adverse effects resulting from cancer treatment with radiation. The principal rationale for a focus on toxicity in radiogenomics is that for many patients treated with radiation, especially individuals diagnosed with early-stage cancers, the survival rates are high, and therefore a substantial number of people will live for a significant period of time beyond treatment. However, many of these patients could suffer from debilitating complications resulting from radiotherapy. Work in radiogenomics has greatly benefited from creation of the Radiogenomics Consortium (RGC) that includes investigators at multiple institutions located in a variety of countries. The common goal of the RGC membership is to share biospecimens and data so as to achieve large-scale studies with increased statistical power to enable identification of relevant genomic markers. A major aim of research in radiogenomics is the development of a predictive instrument to enable identification of people who are at greatest risk for adverse effects resulting from cancer treatment using radiation. It is anticipated that creation of a predictive assay characterized by a high level of sensitivity and specificity will improve precision radiotherapy and assist patients and their physicians to select the optimal treatment for each individual.

摘要

放射组学的总体目标是确定基因组标记物,这些标记物可预测癌症治疗中放射治疗引起的不良反应。放射组学关注毒性的主要依据是,对于许多接受放射治疗的患者,尤其是被诊断为早期癌症的患者,其存活率很高,因此,大量患者在治疗后会存活很长一段时间。然而,这些患者中的许多人可能会因放疗而遭受致残性并发症的折磨。放射组学的研究工作得益于放射组学联盟(RGC)的创建,该联盟包括来自多个国家的多个机构的研究人员。RGC 成员的共同目标是共享生物样本和数据,以便进行大规模研究,增加统计能力,从而确定相关的基因组标记物。放射组学研究的一个主要目标是开发一种预测工具,以确定哪些人最有可能因癌症治疗中的放射治疗而产生不良反应。预计创建一种具有高灵敏度和特异性的预测性检测方法将改善精确放疗,并帮助患者及其医生为每个个体选择最佳治疗方案。

相似文献

1
Radiogenomics: Identification of Genomic Predictors for Radiation Toxicity.
Semin Radiat Oncol. 2017 Oct;27(4):300-309. doi: 10.1016/j.semradonc.2017.04.005.
2
Radiogenomics: towards a personalized radiation oncology.
Curr Opin Pediatr. 2016 Dec;28(6):713-717. doi: 10.1097/MOP.0000000000000408.
3
Radiogenomics: using genetics to identify cancer patients at risk for development of adverse effects following radiotherapy.
Cancer Discov. 2014 Feb;4(2):155-65. doi: 10.1158/2159-8290.CD-13-0197. Epub 2014 Jan 17.
4
Radiogenomics - current status, challenges and future directions.
Cancer Lett. 2016 Nov 1;382(1):127-136. doi: 10.1016/j.canlet.2016.01.035. Epub 2016 Jan 28.
6
Radiogenomics: the search for genetic predictors of radiotherapy response.
Future Oncol. 2014 Dec;10(15):2391-406. doi: 10.2217/fon.14.173.
7
The Patient Perspective on Radiogenomics Testing for Breast Radiation Toxicity.
Clin Oncol (R Coll Radiol). 2018 Mar;30(3):151-157. doi: 10.1016/j.clon.2017.12.001. Epub 2017 Dec 26.
8
Radiogenomics: radiobiology enters the era of big data and team science.
Int J Radiat Oncol Biol Phys. 2014 Jul 15;89(4):709-13. doi: 10.1016/j.ijrobp.2014.03.009.
9
Radiogenomics in the Era of Advanced Radiotherapy.
Clin Oncol (R Coll Radiol). 2019 May;31(5):319-325. doi: 10.1016/j.clon.2019.02.006. Epub 2019 Mar 23.

引用本文的文献

1
Consequences of ionizing radiation exposure to the cardiovascular system.
Nat Rev Cardiol. 2024 Dec;21(12):880-898. doi: 10.1038/s41569-024-01056-4. Epub 2024 Jul 10.
2
3
Potential Single Nucleotide Polymorphisms markers for radiation dermatitis in head and neck cancer patients: a meta-analysis.
Strahlenther Onkol. 2024 Jul;200(7):568-582. doi: 10.1007/s00066-024-02237-3. Epub 2024 Apr 26.
4
Emerging Roles of Circulating Tumor DNA for Increased Precision and Personalization in Radiation Oncology.
Semin Radiat Oncol. 2023 Jul;33(3):262-278. doi: 10.1016/j.semradonc.2023.03.004.
5
A genomic score to predict local control among patients with brain metastases managed with radiation.
Neuro Oncol. 2023 Oct 3;25(10):1815-1827. doi: 10.1093/neuonc/noad098.
6
Predicting the germline dependence of hematuria risk in prostate cancer radiotherapy patients.
Radiother Oncol. 2023 Aug;185:109723. doi: 10.1016/j.radonc.2023.109723. Epub 2023 May 25.
7
Germline genetic biomarkers to stratify patients for personalized radiation treatment.
J Transl Med. 2022 Aug 12;20(1):360. doi: 10.1186/s12967-022-03561-x.
9
Immunomodulation by radiotherapy in tumour control and normal tissue toxicity.
Nat Rev Immunol. 2022 Feb;22(2):124-138. doi: 10.1038/s41577-021-00568-1. Epub 2021 Jul 1.
10
Gene alterations as predictors of radiation-induced toxicity in head and neck squamous cell carcinoma.
J Transl Med. 2021 May 17;19(1):212. doi: 10.1186/s12967-021-02876-5.

本文引用的文献

4
Discovery of rare variants for complex phenotypes.
Hum Genet. 2016 Jun;135(6):625-34. doi: 10.1007/s00439-016-1679-1. Epub 2016 May 24.
5
Coming of age: ten years of next-generation sequencing technologies.
Nat Rev Genet. 2016 May 17;17(6):333-51. doi: 10.1038/nrg.2016.49.
6
Prospective Randomized Trial of Prone Accelerated Intensity Modulated Breast Radiation Therapy With a Daily Versus Weekly Boost to the Tumor Bed.
Int J Radiat Oncol Biol Phys. 2016 Jun 1;95(2):571-8. doi: 10.1016/j.ijrobp.2015.12.373. Epub 2015 Dec 29.
7
Radiogenomics - current status, challenges and future directions.
Cancer Lett. 2016 Nov 1;382(1):127-136. doi: 10.1016/j.canlet.2016.01.035. Epub 2016 Jan 28.
8
Does Radiation Have a Role in Advanced Stage Hodgkin's or Non-Hodgkin Lymphoma?
Curr Treat Options Oncol. 2016 Jan;17(1):4. doi: 10.1007/s11864-015-0377-x.
9
Radiation-induced valvular heart disease.
Heart. 2016 Feb 15;102(4):269-76. doi: 10.1136/heartjnl-2015-308765. Epub 2015 Dec 9.
10
The Prediction of Radiotherapy Toxicity Using Single Nucleotide Polymorphism-Based Models: A Step Toward Prevention.
Semin Radiat Oncol. 2015 Oct;25(4):281-91. doi: 10.1016/j.semradonc.2015.05.006. Epub 2015 May 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验