Instituto de Tecnología en Polímeros y Nanotecnología (ITPN), Facultad de Ingeniería, Universidad de Buenos Aires, Las Heras 2214, CP 1127AAR Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
ICG-CMOS UMR 5253, Université Montpellier 2, Place Eugène Bataillon CC 1702, 34095 Montpellier Cedex 05, France.
Carbohydr Polym. 2017 Feb 10;157:447-467. doi: 10.1016/j.carbpol.2016.09.008. Epub 2016 Sep 14.
This mini review is limited to very recent studies (last 5-10 years) on two major issues, concerning: the production and physical/chemical modification of bacterial cellulose (BC), and its transformation into carbon and integrated synthesis of metal oxides (TiO, ZnO, FeO, etc.), metal sulfide (ZnS, CdS, etc.) and metal nanoparticles (Au, Ag, Pt, Pd, etc.) within bacterial cellulose nanoribbons network. We believe that the crossover of these two domains could be of considerable interest in the view of improving the performance of materials prepared with bacterial cellulose. The diversity of these nanomaterials allows targeting of many very different properties/applications: electrochemical devices, catalysis and photocatalysis, sensors, etc. After an introduction to the most important chemical and physical characteristics of BC, production parameters, and its physical and chemical modifications, we review the use of BC as a precursor of inorganic materials like carbon and composites with metal or inorganic nanoparticles.
这篇小型综述仅限于最近的两项主要研究进展(过去 5-10 年),分别涉及:细菌纤维素(BC)的生产和物理/化学改性,以及其向碳的转化和金属氧化物(TiO、ZnO、FeO 等)、金属硫化物(ZnS、CdS 等)和金属纳米粒子(Au、Ag、Pt、Pd 等)的综合合成,这些都在细菌纤维素纳米带网络内进行。我们相信,鉴于提高用细菌纤维素制备的材料的性能,这两个领域的交叉可能具有相当大的意义。这些纳米材料的多样性允许针对许多非常不同的性质/应用:电化学器件、催化和光催化、传感器等。在介绍了 BC 的最重要的化学和物理特性、生产参数及其物理和化学改性之后,我们回顾了将 BC 用作无机材料(如碳)和金属或无机纳米粒子复合材料的前体的用途。