Anžlovar Alojz, Žagar Ema
National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia.
Nanomaterials (Basel). 2022 May 27;12(11):1837. doi: 10.3390/nano12111837.
Cellulose is the most abundant natural polymer and deserves the special attention of the scientific community because it represents a sustainable source of carbon and plays an important role as a sustainable energent for replacing crude oil, coal, and natural gas in the future. Intense research and studies over the past few decades on cellulose structures have mainly focused on cellulose as a biomass for exploitation as an alternative energent or as a reinforcing material in polymer matrices. However, studies on cellulose structures have revealed more diverse potential applications by exploiting the functionalities of cellulose such as biomedical materials, biomimetic optical materials, bio-inspired mechanically adaptive materials, selective nanostructured membranes, and as a growth template for inorganic nanostructures. This article comprehensively reviews the potential of cellulose structures as a support, biotemplate, and growing vector in the formation of various complex hybrid hierarchical inorganic nanostructures with a wide scope of applications. We focus on the preparation of inorganic nanostructures by exploiting the unique properties and performances of cellulose structures. The advantages, physicochemical properties, and chemical modifications of the cellulose structures are comparatively discussed from the aspect of materials development and processing. Finally, the perspective and potential applications of cellulose-based bioinspired hierarchical functional nanomaterials in the future are outlined.
纤维素是最丰富的天然聚合物,值得科学界特别关注,因为它是一种可持续的碳源,并且作为一种可持续能源,在未来替代原油、煤炭和天然气方面发挥着重要作用。在过去几十年里,对纤维素结构的深入研究主要集中在将纤维素作为一种生物质进行开发,用作替代能源或聚合物基体中的增强材料。然而,对纤维素结构的研究表明,通过利用纤维素的功能,如生物医学材料、仿生光学材料、生物启发的机械自适应材料、选择性纳米结构膜,以及作为无机纳米结构的生长模板,纤维素具有更多样化的潜在应用。本文全面综述了纤维素结构作为支撑体、生物模板和生长载体,在形成具有广泛应用范围的各种复杂混合分级无机纳米结构中的潜力。我们专注于通过利用纤维素结构的独特性质和性能来制备无机纳米结构。从材料开发和加工的角度,对纤维素结构的优点、物理化学性质和化学修饰进行了比较讨论。最后,概述了基于纤维素生物启发的分级功能纳米材料在未来的前景和潜在应用。