Department of Materials Science and Engineering, Korea University , Seoul 02841, Korea.
Materials Architecturing Research Center, Korea Institute of Science and Technology , Seoul 02792, Korea.
ACS Appl Mater Interfaces. 2017 Jan 18;9(2):1524-1535. doi: 10.1021/acsami.6b13299. Epub 2017 Jan 3.
Development of highly active and durable electrocatalysts that can effectively electrocatalyze oxygen reduction reactions (ORR) still remains one important challenge for high-performance electrochemical conversion and storage applications such as fuel cells and metal-air batteries. Herein, we propose the combination of molybdenum-doped PdPt@Pt core-shell octahedra and the pyrene-functionalized poly(dimethylaminoethyl methacrylate)-b-poly[(ethylene glycol) methyl ether methacrylate] ionic block copolymer-functionalized reduced graphene oxide (Mo-PdPt@Pt/IG) to effectively augment the interfacial cohesion of both components using a tunable ex situ mixing strategy. The rationally designed Mo-PdPt@Pt core-shell octahedra have unique compositional benefits, including segregation of Mo atoms on the vertexes and edges of the octahedron and 2-3 shell layers of Pt atoms on a PdPt alloy core, which can provide highly active sites to the catalyst for ORR along with enhanced electrochemical stability. In addition, the ionic block copolymer functionalized graphene can facilitate intermolecular charge transfer and good stability of metal NPs, which arises from the ionic block copolymer interfacial layer. When the beneficial features of the Mo-PdPt@Pt and IG are combined, the Mo-PdPt@Pt/IG exhibits substantially enhanced activity and durability for ORR relative to those of commercial Pt/C. Notably, the Mo-PdPt@Pt/IG shows mass activity 31-fold higher than that of Pt/C and substantially maintains high activities after 10 000 cycles of intensive durability testing. The current study highlights the crucial strategies in designing the highly active and durable Pt-based octahedra and effective combination with functional graphene supports toward the synergetic effects on ORR.
开发高效且稳定的电催化剂,使其能够有效电催化氧还原反应(ORR),仍然是高性能电化学转化和存储应用(如燃料电池和金属空气电池)面临的一个重要挑战。在此,我们提出了钼掺杂的 PdPt@Pt 核壳八面体与芘功能化的聚(二甲氨基乙基甲基丙烯酸酯)-b-聚[(乙二醇)甲基醚甲基丙烯酸酯]离子嵌段共聚物功能化还原氧化石墨烯(Mo-PdPt@Pt/IG)的组合,通过可调的体外混合策略有效地增强了两个组件的界面结合力。合理设计的 Mo-PdPt@Pt 核壳八面体具有独特的组成优势,包括 Mo 原子在八面体的顶点和边缘的偏析和 PdPt 合金核上的 2-3 个壳层的 Pt 原子,这可为催化剂提供用于 ORR 的高活性位点,并增强电化学稳定性。此外,离子嵌段共聚物功能化的石墨烯可以促进分子间电荷转移和金属 NPs 的良好稳定性,这源于离子嵌段共聚物界面层。当 Mo-PdPt@Pt 和 IG 的有益特性结合在一起时,Mo-PdPt@Pt/IG 相对于商业 Pt/C 表现出显著增强的 ORR 活性和耐久性。值得注意的是,Mo-PdPt@Pt/IG 的质量活性比 Pt/C 高 31 倍,在经过 10000 次高强度耐久性测试后,仍保持着较高的活性。本研究强调了设计高效且稳定的基于 Pt 的八面体和有效结合功能化石墨烯载体的关键策略,以实现对 ORR 的协同效应。