Suppr超能文献

通过组合筛选评估用于甲醇氧化的低温燃料电池电催化剂的最佳组成

Evaluation of the Optimum Composition of Low-Temperature Fuel Cell Electrocatalysts for Methanol Oxidation by Combinatorial Screening.

作者信息

Antolini Ermete

机构信息

Scuola di Scienza dei Materiali , Via 25 Aprile 22, Cogoleto, Genova 16016, Italy.

出版信息

ACS Comb Sci. 2017 Feb 13;19(2):47-54. doi: 10.1021/acscombsci.6b00080. Epub 2017 Jan 3.

Abstract

Combinatorial chemistry and high-throughput screening represent an innovative and rapid tool to prepare and evaluate a large number of new materials, saving time and expense for research and development. Considering that the activity and selectivity of catalysts depend on complex kinetic phenomena, making their development largely empirical in practice, they are prime candidates for combinatorial discovery and optimization. This review presents an overview of recent results of combinatorial screening of low-temperature fuel cell electrocatalysts for methanol oxidation. Optimum catalyst compositions obtained by combinatorial screening were compared with those of bulk catalysts, and the effect of the library geometry on the screening of catalyst composition is highlighted.

摘要

组合化学和高通量筛选是制备和评估大量新材料的创新且快速的工具,可为研发节省时间和成本。鉴于催化剂的活性和选择性取决于复杂的动力学现象,这使得其开发在实践中很大程度上依赖于经验,因此它们是组合发现和优化的主要候选对象。本文综述了用于甲醇氧化的低温燃料电池电催化剂组合筛选的近期成果。将通过组合筛选获得的最佳催化剂组成与块状催化剂的组成进行了比较,并强调了库几何结构对催化剂组成筛选的影响。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验