School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne , Parkville 3010, Australia.
York Structural Biology Laboratory, Department of Chemistry, University of York , York YO10 5DD, United Kingdom.
J Am Chem Soc. 2017 Jan 25;139(3):1089-1097. doi: 10.1021/jacs.6b10075. Epub 2017 Jan 17.
Inhibitor design incorporating features of the reaction coordinate and transition-state structure has emerged as a powerful approach for the development of enzyme inhibitors. Such inhibitors find use as mechanistic probes, chemical biology tools, and therapeutics. Endo-α-1,2-mannosidases and endo-α-1,2-mannanases, members of glycoside hydrolase family 99 (GH99), are interesting targets for inhibitor development as they play key roles in N-glycan maturation and microbiotal yeast mannan degradation, respectively. These enzymes are proposed to act via a 1,2-anhydrosugar "epoxide" mechanism that proceeds through an unusual conformational itinerary. Here, we explore how shape and charge contribute to binding of diverse inhibitors of these enzymes. We report the synthesis of neutral dideoxy, glucal and cyclohexenyl disaccharide inhibitors, their binding to GH99 endo-α-1,2-mannanases, and their structural analysis by X-ray crystallography. Quantum mechanical calculations of the free energy landscapes reveal how the neutral inhibitors provide shape but not charge mimicry of the proposed intermediate and transition state structures. Building upon the knowledge of shape and charge contributions to inhibition of family GH99 enzymes, we design and synthesize α-Man-1,3-noeuromycin, which is revealed to be the most potent inhibitor (K 13 nM for Bacteroides xylanisolvens GH99 enzyme) of these enzymes yet reported. This work reveals how shape and charge mimicry of transition state features can enable the rational design of potent inhibitors.
抑制剂设计结合反应坐标和过渡态结构的特征已成为开发酶抑制剂的一种有力方法。此类抑制剂可用作机制探针、化学生物学工具和治疗药物。内切-α-1,2-甘露糖苷酶和内切-α-1,2-甘露聚糖酶是糖苷水解酶家族 99(GH99)的成员,它们分别在 N-聚糖成熟和微生物群落酵母甘露聚糖降解中发挥关键作用,因此成为抑制剂开发的有趣靶标。这些酶被认为通过 1,2-脱水糖“环氧化物”机制发挥作用,该机制涉及不寻常的构象途径。在这里,我们探讨了形状和电荷如何有助于这些酶的各种抑制剂的结合。我们报告了中性二脱氧、葡萄糖醛酸和环己烯二糖抑制剂的合成、它们与 GH99 内切-α-1,2-甘露聚糖酶的结合及其通过 X 射线晶体学的结构分析。自由能景观的量子力学计算揭示了中性抑制剂如何提供形状而不是所提出的中间体和过渡态结构的电荷模拟。在了解形状和电荷对 GH99 酶家族抑制作用的贡献的基础上,我们设计并合成了α-Man-1,3-noeuromycin,它被证明是迄今为止报道的这些酶的最有效抑制剂(Bacteroides xylanisolvens GH99 酶的 K 13 nM)。这项工作揭示了如何通过过渡态特征的形状和电荷模拟来实现有效的抑制剂设计。