Sobala Lukasz F, Speciale Gaetano, Zhu Sha, Raich Lluís, Sannikova Natalia, Thompson Andrew J, Hakki Zalihe, Lu Dan, Shamsi Kazem Abadi Saeideh, Lewis Andrew R, Rojas-Cervellera Víctor, Bernardo-Seisdedos Ganeko, Zhang Yongmin, Millet Oscar, Jiménez-Barbero Jesús, Bennet Andrew J, Sollogoub Matthieu, Rovira Carme, Davies Gideon J, Williams Spencer J
York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom.
School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia.
ACS Cent Sci. 2020 May 27;6(5):760-770. doi: 10.1021/acscentsci.0c00111. Epub 2020 Apr 16.
Retaining glycoside hydrolases cleave their substrates through stereochemical retention at the anomeric position. Typically, this involves two-step mechanisms using either an enzymatic nucleophile via a covalent glycosyl enzyme intermediate or neighboring-group participation by a substrate-borne 2-acetamido neighboring group via an oxazoline intermediate; no enzymatic mechanism with participation of the sugar 2-hydroxyl has been reported. Here, we detail structural, computational, and kinetic evidence for neighboring-group participation by a mannose 2-hydroxyl in glycoside hydrolase family 99 -α-1,2-mannanases. We present a series of crystallographic snapshots of key species along the reaction coordinate: a Michaelis complex with a tetrasaccharide substrate; complexes with intermediate mimics, a sugar-shaped cyclitol β-1,2-aziridine and β-1,2-epoxide; and a product complex. The 1,2-epoxide intermediate mimic displayed hydrolytic and transfer reactivity analogous to that expected for the 1,2-anhydro sugar intermediate supporting its catalytic equivalence. Quantum mechanics/molecular mechanics modeling of the reaction coordinate predicted a reaction pathway through a 1,2-anhydro sugar via a transition state in an unusual flattened, envelope ( ) conformation. Kinetic isotope effects ( / ) for anomeric-H and anomeric-C support an oxocarbenium ion-like transition state, and that for C2-O (1.052 ± 0.006) directly implicates nucleophilic participation by the C2-hydroxyl. Collectively, these data substantiate this unprecedented and long-imagined enzymatic mechanism.
保留型糖苷水解酶通过在异头位置的立体化学保留来切割其底物。通常,这涉及两步机制,要么通过共价糖基酶中间体使用酶促亲核试剂,要么通过恶唑啉中间体由底物携带的2-乙酰氨基邻基进行邻基参与;尚未报道有糖2-羟基参与的酶促机制。在这里,我们详细阐述了糖苷水解酶家族99-α-1,2-甘露聚糖酶中甘露糖2-羟基邻基参与的结构、计算和动力学证据。我们展示了沿着反应坐标的一系列关键物种的晶体学快照:与四糖底物的米氏复合物;与中间体模拟物、糖形环醇β-1,2-氮丙啶和β-1,2-环氧化物的复合物;以及产物复合物。1,2-环氧化物中间体模拟物显示出与预期的1,2-脱水糖中间体相似的水解和转移反应性,支持其催化等效性。反应坐标的量子力学/分子力学建模预测了一条通过1,2-脱水糖的反应途径,该途径通过一个处于不寻常扁平信封( )构象的过渡态。异头-H和异头-C的动力学同位素效应( / )支持类似氧碳鎓离子的过渡态,而C2-O的动力学同位素效应(1.052 ± 0.006)直接表明C2-羟基的亲核参与。总的来说,这些数据证实了这种前所未有的、长期设想中的酶促机制。