Capelli Riccardo, Marchetti Filippo, Tiana Guido, Colombo Giorgio
Center for Complexity & Biosystems and Dipartimento di Fisica, Università degli Studi di Milano and INFN , via Celoria 16, 20133 Milan, Italy.
Istituto di Chimica del Riconoscimento Molecolare, Consiglio Nazionale delle Ricerche , via Mario Bianco 9, 20131 Milan, Italy.
J Chem Inf Model. 2017 Jan 23;57(1):6-10. doi: 10.1021/acs.jcim.6b00584. Epub 2016 Dec 19.
Computational design is becoming a driving force of structural vaccinology, whereby protein antigens are engineered to generate new biomolecules with optimized immunological properties. In particular, the design of new proteins that contain multiple, different epitopes can potentially provide novel highly efficient vaccine candidates. In this context, epitope grafting, which entails the transplantation of an antibody recognition motif from one protein onto a different protein scaffold (possibly containing other immunoreactive sequences) holds great promise for the realization of superantigens. Herein, we present SAGE (strategy for alignment and grafting of epitopes), an automated computational tool for the implantation of immunogenic epitopes onto a given scaffold. It is based on the comparison between the expected secondary structures of the candidates to be grafted with all the secondary structures in the target scaffold. Evaluating the differences both in sequence and in structure between the epitope and the scaffold returns a ranking of most probable molecules containing the new antigenic sequence. We validate this approach identifying the grafting positions obtained in previous works by experimental and computational methods, proving an efficient, flexible, and fast tool to perform the initial scanning for epitope grafting. This approach is fully general and may be applied to any target antigen and candidate epitopes with known 3D structures.
计算设计正成为结构疫苗学的一股驱动力,通过对蛋白质抗原进行工程改造,以生成具有优化免疫特性的新生物分子。特别是,设计包含多个不同表位的新蛋白质有可能提供新型高效的疫苗候选物。在此背景下,表位嫁接(即将抗体识别基序从一种蛋白质移植到不同的蛋白质支架上(可能包含其他免疫反应序列))对于实现超抗原具有很大的潜力。在此,我们展示了SAGE(表位比对和嫁接策略),这是一种用于将免疫原性表位植入给定支架的自动化计算工具。它基于待嫁接候选物的预期二级结构与目标支架中所有二级结构之间的比较。评估表位与支架之间在序列和结构上的差异会得出包含新抗原序列的最可能分子的排名。我们通过实验和计算方法验证了这种方法,确定了先前工作中获得的嫁接位置,证明了它是一种用于表位嫁接初始扫描的高效、灵活且快速的工具。这种方法具有完全通用性,可应用于任何具有已知三维结构的目标抗原和候选表位。