Suppr超能文献

蛋白表位模拟物:从新型抗生素到超分子合成疫苗。

Protein Epitope Mimetics: From New Antibiotics to Supramolecular Synthetic Vaccines.

机构信息

Chemistry Department, University of Zurich , Winterthurerstrasse 190, 8057 Zurich, Switzerland.

出版信息

Acc Chem Res. 2017 Jun 20;50(6):1323-1331. doi: 10.1021/acs.accounts.7b00129. Epub 2017 Jun 1.

Abstract

Protein epitope mimetics provide powerful tools to study biomolecular recognition in many areas of chemical biology. They may also provide access to new biologically active molecules and potentially to new classes of drug and vaccine candidates. Here we highlight approaches for the design of folded, structurally defined epitope mimetics, by incorporating backbone and side chains of hot residues onto a stable constrained scaffold. Using robust synthetic methods, the structural, biological, and physical properties of epitope mimetics can be optimized, by variation of both side chain and backbone chemistry. To illustrate the potential of protein epitope mimetics in medicinal chemistry and biotechnology, we present studies in two areas of infectology; the discovery of new antibiotics targeting essential outer membrane (OM) proteins in Gram-negative bacteria and the design of supramolecular synthetic vaccines. The discovery of new antibiotics with novel mechanisms of action, in particular to combat infections caused by Gram-negative pathogens, represents a major challenge in medicinal chemistry. We were inspired by naturally occurring cationic antimicrobial peptides to design structurally related peptidomimetics and to optimize their antimicrobial properties through library synthesis and screening. Through these efforts, we could show that antimicrobial β-hairpin mimetics may have structures and properties that facilitate interactions with essential bacterial β-barrel OM proteins. One recently discovered family of antimicrobial peptidomimetics targets the β-barrel protein LptD in Pseudomonas spp. This protein plays a key role in lipopolysaccaride (LPS) transport to the cell surface during OM biogenesis. Through a highly selective interaction with LptD, the peptidomimetic blocks LPS transport, resulting in nanomolar antimicrobial activity against the important human pathogen P. aeruginosa. Epitope mimetics may also have great potential in the field of vaccinology, where structural information on complexes between neutralizing antibodies and their cognate epitopes can be taken as a starting point for B cell epitope mimetic design. In order to generate potent immune responses, an effective method of delivering epitope mimetics to relevant cells and tissues in the immune system is also required. For this, engineered synthetic nanoparticles (synthetic virus-like particles, SVLPs) prepared using supramolecular chemistry can be designed with optimal surface properties for efficient dendritic cell-mediated delivery of folded B-cell and linear T-cell epitopes, along with ligands for pattern recognition receptors, into lymphoid tissues. In this way, multivalent display of the epitope mimetics occurs over the surface of the nanoparticle, suitable for cross-linking B cell receptors. In this highly immunogenic format, strong epitope-specific humoral immune responses can be elicited that target infections caused by pathogenic microorganisms. Other potential applications of epitope mimetics in next-generation therapeutics are also discussed.

摘要

蛋白表位模拟物为研究化学生物学多个领域的生物分子识别提供了有力工具。它们还可能提供新的具有生物活性的分子,以及潜在的新的药物和疫苗候选物。在这里,我们强调了通过将热点残基的主链和侧链整合到稳定的约束支架上来设计折叠的、结构定义的表位模拟物的方法。通过使用稳健的合成方法,可以通过改变侧链和主链化学来优化表位模拟物的结构、生物学和物理性质。为了说明蛋白表位模拟物在药物化学和生物技术中的潜力,我们介绍了传染病学两个领域的研究;发现针对革兰氏阴性菌外膜(OM)中必需蛋白的新型抗生素,以及设计超分子合成疫苗。发现具有新型作用机制的新型抗生素,特别是针对革兰氏阴性病原体引起的感染,是药物化学的主要挑战。我们受到天然存在的阳离子抗菌肽的启发,设计了结构相关的肽模拟物,并通过文库合成和筛选优化了它们的抗菌特性。通过这些努力,我们可以表明,抗菌 β-发夹模拟物可能具有促进与必需细菌 β-桶 OM 蛋白相互作用的结构和特性。最近发现的一组抗菌肽模拟物靶向假单胞菌属中的 β-桶蛋白 LptD。该蛋白在 OM 生物发生过程中脂多糖(LPS)向细胞表面的运输中起关键作用。通过与 LptD 的高度选择性相互作用,肽模拟物阻断 LPS 转运,导致对重要人类病原体铜绿假单胞菌的纳摩尔级抗菌活性。表位模拟物在疫苗学领域也具有巨大潜力,其中针对中和抗体与其同源表位之间复合物的结构信息可以作为 B 细胞表位模拟设计的起点。为了产生有效的免疫反应,还需要一种将表位模拟物有效递送至免疫系统中相关细胞和组织的方法。为此,可以使用基于超分子化学的工程合成纳米颗粒(合成病毒样颗粒,SVLPs)设计具有最佳表面特性的纳米颗粒,以有效递送至树突状细胞,递送上皮细胞 B 细胞表位和线性 T 细胞表位,以及模式识别受体的配体,进入淋巴组织。通过这种方式,表位模拟物在纳米颗粒表面上呈多价显示,适合交联 B 细胞受体。在这种高度免疫原性的形式下,可以引发针对致病微生物感染的强烈的表位特异性体液免疫反应。还讨论了表位模拟物在下一代治疗中的其他潜在应用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验