Sha Liang, Daitoku Hiroaki, Araoi Sho, Kaneko Yuta, Takahashi Yuta, Kako Koichiro, Fukamizu Akiyoshi
Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Ibaraki, Japan.
Life Science Center, Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Ibaraki, Japan.
Mol Cell Biol. 2017 Mar 1;37(6). doi: 10.1128/MCB.00504-16. Print 2017 Mar 15.
Protein arginine methyltransferase 1 (PRMT-1) catalyzes asymmetric arginine dimethylation on cellular proteins and modulates various aspects of biological processes, such as signal transduction, DNA repair, and transcriptional regulation. We have previously reported that the null mutant of in exhibits a slightly shortened life span, but the physiological significance of PRMT-1 remains largely unclear. Here we explored the role of PRMT-1 in mitochondrial function as hinted by a two-dimensional Western blot-based proteomic study. Subcellular fractionation followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis showed that PRMT-1 is almost entirely responsible for asymmetric arginine dimethylation on mitochondrial proteins. Importantly, isolated mitochondria from mutants represent compromised ATP synthesis , and whole-worm respiration in mutants is decreased Transgenic rescue experiments demonstrate that PRMT-1-dependent asymmetric arginine dimethylation is required to prevent mitochondrial reactive oxygen species (ROS) production, which consequently causes the activation of the mitochondrial unfolded-protein response. Furthermore, the loss of enzymatic activity of induces food avoidance behavior due to mitochondrial dysfunction, but treatment with the antioxidant -acetylcysteine significantly ameliorates this phenotype. These findings add a new layer of complexity to the posttranslational regulation of mitochondrial function and provide clues for understanding the physiological roles of PRMT-1 in multicellular organisms.
蛋白质精氨酸甲基转移酶1(PRMT-1)催化细胞蛋白质上的不对称精氨酸二甲基化,并调节生物过程的各个方面,如信号转导、DNA修复和转录调控。我们之前报道过,PRMT-1基因敲除突变体的寿命略有缩短,但PRMT-1的生理意义在很大程度上仍不清楚。在这里,我们根据基于二维蛋白质印迹的蛋白质组学研究提示,探讨了PRMT-1在线粒体功能中的作用。亚细胞分级分离后进行液相色谱-串联质谱(LC-MS/MS)分析表明,PRMT-1几乎完全负责线粒体蛋白质上的不对称精氨酸二甲基化。重要的是,PRMT-1突变体分离出的线粒体显示ATP合成受损,PRMT-1突变体的全虫呼吸作用降低。转基因拯救实验表明,需要PRMT-1依赖性的不对称精氨酸二甲基化来防止线粒体活性氧(ROS)的产生,从而导致线粒体未折叠蛋白反应的激活。此外,PRMT-1酶活性的丧失由于线粒体功能障碍而诱导食物回避行为,但用抗氧化剂N-乙酰半胱氨酸治疗可显著改善这种表型。这些发现为线粒体功能的翻译后调控增添了新的复杂性,并为理解PRMT-1在多细胞生物中的生理作用提供了线索。