Department of Chemistry, University of Connecticut , Storrs, Connecticut 06269-3060, United States.
Department of Chemistry, Youngstown State University , One University Plaza, Youngstown, Ohio 44555-3663, United States.
J Am Chem Soc. 2017 Jan 11;139(1):548-560. doi: 10.1021/jacs.6b12419. Epub 2016 Dec 20.
Owing to their intense near infrared absorption and emission properties, to the ability to photogenerate singlet oxygen, or to act as photoacoustic imaging agents within the optical window of tissue, bacteriochlorins (2,3,12,13-tetrahydroporphyrins) promise to be of utility in many biomedical and technical applications. The ability to fine-tune the electronic properties of synthetic bacteriochlorins is important for these purposes. In this vein, we report the synthesis, structure determination, optical properties, and theoretical analysis of the electronic structure of a family of expanded bacteriochlorin analogues. The stepwise expansion of both pyrroline moieties in near-planar meso-tetraarylbacteriochlorins to morpholine moieties yields ruffled mono- and bismorpholinobacteriochlorins with broadened and up to 90 nm bathochromically shifted bacteriochlorin-like optical spectra. Intramolecular ring-closure reactions of the morpholine moiety with the flanking meso-aryl groups leads to a sharpened, blue-shifted wavelength λ band, bucking the general red-shifting trend expected for such linkages. A conformational origin of the optical modulations was previously proposed, but discrepancies between the solid state conformations and the corresponding solution state optical spectra defy simple structure-optical property correlations. Using density functional theory and excited state methods, we derive the molecular origins of the spectral modulations. About half of the modulation is due to ruffling of the bacteriochlorin chromophore. Surprisingly, the other half originates in the localized twisting of the C-C-C-C dihedral angle within the morpholine moieties. Our calculations suggest a predictable and large spectral shift (2.0 nm/deg twist) for morpholine deformations within these fairly flexible moieties. This morpholine moiety deformation can take place largely independently from the overall macrocycle conformation. The morpholinobacteriochlorins are thus excellent models for localized bacteriochlorin chromophore deformations that are suggested to also be responsible for the optical modulation of naturally occurring bacteriochlorophylls. We propose the use of morpholinobacteriochlorins as mechanochromic dyes in engineering and materials science applications.
由于其强烈的近红外吸收和发射特性、光生成单线态氧的能力,或在组织光学窗口内充当光声成象剂,细菌叶绿素(2,3,12,13-四氢卟啉)有望在许多生物医学和技术应用中发挥作用。精细调整合成细菌叶绿素的电子性质对于这些目的非常重要。为此,我们报告了一系列扩展型细菌叶绿素类似物的合成、结构确定、光学性质和电子结构的理论分析。在近平面中,将卟啉部分逐步扩展到吗啉部分,得到了展宽的单和双吗啉细菌叶绿素,其细菌叶绿素样的光学光谱发生了高达 90nm 的红移。吗啉部分与侧翼的中芳基之间的分子内环合反应导致尖锐的蓝移波长 λ 带,与预期的此类键合的红移趋势相反。先前提出了光学调制的构象起源,但固态构象与相应的溶液态光学光谱之间的差异否定了简单的结构-光学性质相关性。使用密度泛函理论和激发态方法,我们推导出了光谱调制的分子起源。大约一半的调制归因于细菌叶绿素发色团的皱缩。令人惊讶的是,另一半源自吗啉部分内 C-C-C-C 二面角的局部扭曲。我们的计算表明,在这些相当灵活的部分中,吗啉变形会产生可预测的大光谱位移(2.0nm/deg 扭曲)。这种吗啉部分的变形可以在很大程度上独立于整个大环构象发生。因此,吗啉细菌叶绿素是局部细菌叶绿素发色团变形的极好模型,据推测,这种变形也是天然细菌叶绿素光学调制的原因。我们建议在工程和材料科学应用中使用吗啉细菌叶绿素作为机械变色染料。