Department of Materials and Applied Chemistry, College of Science Technology, Nihon University , Chiyoda, Tokyo 101-8308, Japan.
Division of Chemistry and Materials Science, Graduate School of Engineering, Nagasaki University , Nagasaki 852-8521, Japan.
ACS Appl Mater Interfaces. 2017 Jan 11;9(1):750-762. doi: 10.1021/acsami.6b13147. Epub 2016 Dec 21.
We demonstrated the usefulness of Cu light-harvesting plasmonic nanoantennae for the development of inexpensive and efficient artificial organic photoelectric conversion systems. The systems consisted of the stacked structures of layers of porphyrin as a dye molecule, oxidation-suppressing layers, and plasmonic Cu arrayed electrodes. To accurately evaluate the effect of Cu nanoantenna on the porphyrin photocurrent, the production of CuO by the spontaneous oxidation of the electrode surfaces, which can act as a photoexcited species under visible light irradiation, was effectively suppressed by inserting the ultrathin linking layers consisting of 16-mercaptohexadecanoic acid, titanium oxide, and poly(vinyl alcohol) between the electrode surface and porphyrin molecules. The reflection spectra in an aqueous environment of the arrayed electrodes, which were prepared by thermally depositing Cu on two-dimensional colloidal crystals of silica with diameters of 160, 260, and 330 nm, showed clear reflection dips at 596, 703, and 762 nm, respectively, which are attributed to the excitation of localized surface plasmon resonance (LSPR). While the first dip lies within the wavelengths where the imaginary part of the Cu dielectric function is moderately large, the latter two dips lie within a region of a quite small imaginary part. Consequently, the LSPR excited at the red region provided a particularly large enhancement of porphyrin photocurrent at the Q-band (ca. 59-fold), compared to that on a Cu planar electrode. These results strongly suggest that the plasmonic Cu nanoantennae contribute to the substantial improvement of photoelectric conversion efficiency at the wavelengths, where the imaginary part of the dielectric function is small.
我们展示了 Cu 光收集等离子体纳米天线在开发廉价高效的人工有机光电转换系统方面的有用性。该系统由堆叠结构组成,包括作为染料分子的卟啉层、氧化抑制层和等离子体 Cu 排列电极。为了准确评估 Cu 纳米天线对卟啉光电流的影响,通过在电极表面和卟啉分子之间插入由 16-巯基十六烷酸、氧化钛和聚乙烯醇组成的超薄连接层,有效地抑制了电极表面自发氧化产生的 CuO 的生成,CuO 可以在可见光照射下作为光激发物质。通过在直径为 160、260 和 330nm 的二维二氧化硅胶体晶体上热沉积 Cu 制备的阵列电极在水环境中的反射光谱在 596、703 和 762nm 处分别显示出明显的反射陷波,这归因于局域表面等离激元共振 (LSPR) 的激发。虽然第一个陷波位于 Cu 介电函数虚部适度较大的波长范围内,但后两个陷波位于介电函数虚部相当小的区域内。因此,与在 Cu 平面电极上相比,在红色区域激发的 LSPR 使卟啉光电流在 Q 带(约 59 倍)处得到特别大的增强。这些结果强烈表明,等离子体 Cu 纳米天线有助于在介电函数虚部较小的波长下显著提高光电转换效率。