Departamento de Física de Materiales, Facultad de Ciencias Físicas, Universidad Complutense de Madrid , 28040-Madrid, Spain.
Department of Physics, University of Warwick , Coventry, CV4 7AL, United Kingdom.
Nano Lett. 2017 Jan 11;17(1):515-522. doi: 10.1021/acs.nanolett.6b04189. Epub 2016 Dec 23.
Tailoring the shape of complex nanostructures requires control of the growth process. In this work, we report on the selective growth of nanostructured tin oxide on gallium oxide nanowires leading to the formation of SnO/GaO complex nanostructures. GaO nanowires decorated with either crossing SnO nanowires or SnO particles have been obtained in a single step treatment by thermal evaporation. The reason for this dual behavior is related to the growth direction of trunk GaO nanowires. GaO nanowires grown along the [001] direction favor the formation of crossing SnO nanowires. Alternatively, SnO forms rhombohedral particles on [110] GaO nanowires leading to skewer-like structures. These complex oxide structures were grown by a catalyst-free vapor-solid process. When pure Ga and tin oxide were used as source materials and compacted powders of GaO acted as substrates, [110] GaO nanowires grow preferentially. High-resolution transmission electron microscopy analysis reveals epitaxial relationship lattice matching between the GaO axis and SnO particles, forming skewer-like structures. The addition of chromium oxide to the source materials modifies the growth direction of the trunk GaO nanowires, growing along the [001], with crossing SnO wires. The SnO/GaO junctions does not meet the lattice matching condition, forming a grain boundary. The electronic and optical properties have been studied by XPS and CL with high spatial resolution, enabling us to get both local chemical and electronic information on the surface in both type of structures. The results will allow tuning optical and electronic properties of oxide complex nanostructures locally as a function of the orientation. In particular, we report a dependence of the visible CL emission of SnO on its particular shape. Orange emission dominates in SnO/GaO crossing wires while green-blue emission is observed in SnO particles attached to GaO trunks. The results show that the GaO-SnO system appears to be a benchmark for shape engineering to get architectures involving nanowires via the control of the growth direction of the nanowires.
定制复杂纳米结构的形状需要控制生长过程。在这项工作中,我们报告了在氧化镓纳米线上选择性生长纳米结构的氧化锡,从而形成 SnO/GaO 复合纳米结构。通过热蒸发一步处理,在 GaO 纳米线上获得了交叉 SnO 纳米线或 SnO 颗粒装饰的 GaO 纳米线。这种双重行为的原因与主干 GaO 纳米线的生长方向有关。沿[001]方向生长的 GaO 纳米线有利于形成交叉 SnO 纳米线。相反,SnO 在[110]GaO 纳米线上形成菱面体颗粒,导致形成类似串状的结构。这些复合氧化物结构是通过无催化剂的气-固过程生长的。当纯 Ga 和氧化锡作为源材料,并且 GaO 的压实粉末作为衬底时,优先生长[110]GaO 纳米线。高分辨率透射电子显微镜分析表明,GaO 轴和 SnO 颗粒之间存在晶格匹配的外延关系,形成类似串状的结构。在源材料中添加氧化铬会改变主干 GaO 纳米线的生长方向,使其沿[001]方向生长,同时形成交叉 SnO 线。SnO/GaO 结不符合晶格匹配条件,形成晶界。通过具有高空间分辨率的 XPS 和 CL 研究了电子和光学性质,使我们能够在两种结构中获得表面的局部化学和电子信息。结果可以根据取向局部调整氧化物复合纳米结构的光学和电子性质。特别是,我们报告了 SnO 的可见光 CL 发射与其特定形状的依赖关系。在 SnO/GaO 交叉线中,橙色发射占主导地位,而在 GaO 主干上附着的 SnO 颗粒中观察到绿色-蓝色发射。结果表明,GaO-SnO 系统似乎是通过控制纳米线的生长方向来获得涉及纳米线的架构的形状工程的基准。