Suppr超能文献

相似文献

1
Optimizing assembly and production of native bispecific antibodies by codon de-optimization.
MAbs. 2017 Feb/Mar;9(2):231-239. doi: 10.1080/19420862.2016.1267088.
4
"BIClonals": Production of Bispecific Antibodies in IgG Format in Transiently Transfected Mammalian Cells.
Methods Mol Biol. 2019;1904:431-454. doi: 10.1007/978-1-4939-8958-4_22.
5
Computational design of a specific heavy chain/κ light chain interface for expressing fully IgG bispecific antibodies.
Protein Sci. 2017 Oct;26(10):2021-2038. doi: 10.1002/pro.3240. Epub 2017 Jul 31.
6
Engineering bispecific antibodies with defined chain pairing.
N Biotechnol. 2017 Oct 25;39(Pt B):167-173. doi: 10.1016/j.nbt.2016.12.010. Epub 2017 Jan 27.
7
8
LUZ-Y, a novel platform for the mammalian cell production of full-length IgG-bispecific antibodies.
J Biol Chem. 2012 Dec 21;287(52):43331-9. doi: 10.1074/jbc.M112.397869. Epub 2012 Nov 1.
10
Guiding bispecific monovalent antibody formation through proteolysis of IgG1 single-chain.
MAbs. 2017 Apr;9(3):438-454. doi: 10.1080/19420862.2016.1277301. Epub 2017 Jan 5.

引用本文的文献

1
Alternative splicing for tuneable expression of protein subunits at desired ratios.
MAbs. 2024 Jan-Dec;16(1):2342243. doi: 10.1080/19420862.2024.2342243. Epub 2024 Apr 22.
2
Design and engineering of bispecific antibodies: insights and practical considerations.
Front Bioeng Biotechnol. 2024 Jan 25;12:1352014. doi: 10.3389/fbioe.2024.1352014. eCollection 2024.
3
Developing a second-generation clinical candidate AAV vector for gene therapy of familial hypercholesterolemia.
Mol Ther Methods Clin Dev. 2021 May 5;22:1-10. doi: 10.1016/j.omtm.2021.04.017. eCollection 2021 Sep 10.
4
Vaccines for COVID-19.
Clin Exp Immunol. 2020 Nov;202(2):162-192. doi: 10.1111/cei.13517. Epub 2020 Oct 18.
5
Computational tools for modern vaccine development.
Hum Vaccin Immunother. 2020 Mar 3;16(3):723-735. doi: 10.1080/21645515.2019.1670035. Epub 2019 Dec 18.
7
Design and Production of Bispecific Antibodies.
Antibodies (Basel). 2019 Aug 2;8(3):43. doi: 10.3390/antib8030043.

本文引用的文献

1
High-level Expression and Purification of Active Human FGF-2 in Escherichia coli by Codon and Culture Condition Optimization.
Iran Red Crescent Med J. 2016 Jan 3;18(2):e21615. doi: 10.5812/ircmj.21615. eCollection 2016 Feb.
2
Advances in recombinant antibody manufacturing.
Appl Microbiol Biotechnol. 2016 Apr;100(8):3451-61. doi: 10.1007/s00253-016-7388-9. Epub 2016 Mar 3.
3
Codon optimality is a major determinant of mRNA stability.
Cell. 2015 Mar 12;160(6):1111-24. doi: 10.1016/j.cell.2015.02.029.
5
Codon optimization of genes for efficient protein expression in mammalian cells by selection of only preferred human codons.
Protein Expr Purif. 2015 May;109:47-54. doi: 10.1016/j.pep.2015.02.002. Epub 2015 Feb 7.
6
High-level expression of tamavidin 2 in human cells by codon-usage optimization.
Biosci Biotechnol Biochem. 2015;79(4):610-6. doi: 10.1080/09168451.2014.991690. Epub 2014 Dec 15.
8
Optimizing membrane-protein biogenesis through nonoptimal-codon usage.
Nat Struct Mol Biol. 2014 Dec;21(12):1023-5. doi: 10.1038/nsmb.2926.
9
Optimization protein productivity of human interleukin-2 through codon usage, gene copy number and intracellular tRNA concentration in CHO cells.
Biochem Biophys Res Commun. 2014 Nov 14;454(2):347-52. doi: 10.1016/j.bbrc.2014.10.097. Epub 2014 Oct 24.
10
Local slowdown of translation by nonoptimal codons promotes nascent-chain recognition by SRP in vivo.
Nat Struct Mol Biol. 2014 Dec;21(12):1100-5. doi: 10.1038/nsmb.2919. Epub 2014 Nov 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验