Department of Physics, University of Florida, PO Box 118440, Gainesville, FL 32611-8440, USA.
Rep Prog Phys. 2017 Feb;80(2):026503. doi: 10.1088/1361-6633/80/2/026503. Epub 2016 Dec 21.
Recent progress in experimental techniques has made it possible to extract detailed information on dynamics of carriers in a correlated electron material from its optical conductivity, [Formula: see text]. This review consists of three parts, addressing the following three aspects of optical response: (1) the role of momentum relaxation; (2) [Formula: see text] scaling of the optical conductivity of a Fermi-liquid metal, and (3) the optical conductivity of non-Fermi-liquid metals. In the first part (section 2), we analyze the interplay between the contributions to the conductivity from normal and umklapp electron-electron scattering. As a concrete example, we consider a two-band metal and show that although its optical conductivity is finite it does not obey the Drude formula. In the second part (sections 3 and 4), we re-visit the Gurzhi formula for the optical scattering rate, [Formula: see text], and show that a factor of [Formula: see text] is the manifestation of the 'first-Matsubara-frequency rule' for boson response, which states that [Formula: see text] must vanish upon analytic continuation to the first boson Matsubara frequency. However, recent experiments show that the coefficient b in the Gurzhi-like form, [Formula: see text], differs significantly from b = 4 in most of the cases. We suggest that the deviations from Gurzhi scaling may be due to the presence of elastic but energy-dependent scattering, which decreases the value of b below 4, with b = 1 corresponding to purely elastic scattering. In the third part (section 5), we consider the optical conductivity of metals near quantum phase transitions to nematic and spin-density-wave states. In the last case, we focus on 'composite' scattering processes, which give rise to a non-Fermi-liquid behavior of the optical conductivity at T = 0: [Formula: see text] at low frequencies and [Formula: see text] at higher frequencies. We also discuss [Formula: see text] scaling of the conductivity and show that [Formula: see text] in the same model scales in a non-Fermi-liquid way, as [Formula: see text].
最近的实验技术进展使得从其光导率中提取关联电子材料中载流子动力学的详细信息成为可能,[公式:见文本]。本综述由三部分组成,涉及光学响应的以下三个方面:(1)动量弛豫的作用;(2)费米液体金属的[公式:见文本]标度光学电导率,以及(3)非费米液体金属的光学电导率。在第一部分(第 2 节)中,我们分析了正常和 Umklapp 电子-电子散射对电导率的贡献之间的相互作用。作为一个具体的例子,我们考虑一个双带金属,并表明尽管其光学电导率是有限的,但它不遵守 Drude 公式。在第二部分(第 3 节和第 4 节)中,我们重新讨论了光学散射率的 Gurzhi 公式,[公式:见文本],并表明因子[公式:见文本]是玻色响应的“第一 Matsubara 频率规则”的表现,该规则指出[公式:见文本]必须在分析延续到第一玻色 Matsubara 频率时消失。然而,最近的实验表明,在大多数情况下,Gurzhi 类似形式中的系数 b,[公式:见文本],与 b = 4 有很大的不同。我们认为,偏离 Gurzhi 标度可能是由于存在弹性但能量相关的散射,这会使 b 值降低到 4 以下,b = 1 对应于纯弹性散射。在第三部分(第 5 节)中,我们考虑了接近向列相和自旋密度波态的量子相变的金属的光学电导率。在后一种情况下,我们专注于“复合”散射过程,这些过程导致光学电导率在 T = 0 时表现出非费米液体行为:[公式:见文本]在较低频率和[公式:见文本]在更高频率。我们还讨论了电导率的[公式:见文本]标度,并表明在相同的模型中,[公式:见文本]以非费米液体的方式标度,就像[公式:见文本]一样。