Suppr超能文献

CRISPR/Cas9介导的整合实现了内源性标记的RNA结合蛋白的TAG-eCLIP。

CRISPR/Cas9-mediated integration enables TAG-eCLIP of endogenously tagged RNA binding proteins.

作者信息

Van Nostrand Eric L, Gelboin-Burkhart Chelsea, Wang Ruth, Pratt Gabriel A, Blue Steven M, Yeo Gene W

机构信息

Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA; Stem Cell Program, University of California at San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California at San Diego, La Jolla, CA, USA.

Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA; Stem Cell Program, University of California at San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California at San Diego, La Jolla, CA, USA; Bioinformatics and Systems Biology Graduate Program, University of California San Diego, La Jolla, CA, USA.

出版信息

Methods. 2017 Apr 15;118-119:50-59. doi: 10.1016/j.ymeth.2016.12.007. Epub 2016 Dec 18.

Abstract

Identification of in vivo direct RNA targets for RNA binding proteins (RBPs) provides critical insight into their regulatory activities and mechanisms. Recently, we described a methodology for enhanced crosslinking and immunoprecipitation followed by high-throughput sequencing (eCLIP) using antibodies against endogenous RNA binding proteins. However, in many cases it is desirable to profile targets of an RNA binding protein for which an immunoprecipitation-grade antibody is lacking. Here we describe a scalable method for using CRISPR/Cas9-mediated homologous recombination to insert a peptide tag into the endogenous RNA binding protein locus. Further, we show that TAG-eCLIP performed using tag-specific antibodies can yield the same robust binding profiles after proper control normalization as eCLIP with antibodies against endogenous proteins. Finally, we note that antibodies against commonly used tags can immunoprecipitate significant amounts of antibody-specific RNA, emphasizing the need for paired controls alongside each experiment for normalization. TAG-eCLIP enables eCLIP profiling of new native proteins where no suitable antibody exists, expanding the RBP-RNA interaction landscape.

摘要

鉴定RNA结合蛋白(RBP)在体内的直接RNA靶标,能为了解其调控活性和机制提供关键见解。最近,我们描述了一种方法,即使用针对内源性RNA结合蛋白的抗体进行增强交联和免疫沉淀,随后进行高通量测序(eCLIP)。然而,在许多情况下,人们希望分析缺乏免疫沉淀级抗体的RNA结合蛋白的靶标。在此,我们描述了一种可扩展的方法,利用CRISPR/Cas9介导的同源重组将肽标签插入内源性RNA结合蛋白基因座。此外,我们表明,使用标签特异性抗体进行的TAG-eCLIP在经过适当的对照标准化后,能够产生与使用针对内源性蛋白的抗体进行的eCLIP相同的稳健结合图谱。最后,我们注意到,针对常用标签的抗体可以免疫沉淀大量抗体特异性RNA,这强调了每个实验都需要配对对照进行标准化。TAG-eCLIP能够在没有合适抗体的情况下对新的天然蛋白进行eCLIP分析,扩展了RBP-RNA相互作用的研究范围。

相似文献

1
CRISPR/Cas9-mediated integration enables TAG-eCLIP of endogenously tagged RNA binding proteins.
Methods. 2017 Apr 15;118-119:50-59. doi: 10.1016/j.ymeth.2016.12.007. Epub 2016 Dec 18.
2
Robust transcriptome-wide discovery of RNA-binding protein binding sites with enhanced CLIP (eCLIP).
Nat Methods. 2016 Jun;13(6):508-14. doi: 10.1038/nmeth.3810. Epub 2016 Mar 28.
3
DO-RIP-seq to quantify RNA binding sites transcriptome-wide.
Methods. 2017 Apr 15;118-119:16-23. doi: 10.1016/j.ymeth.2016.11.004. Epub 2016 Nov 10.
4
Optimization of PAR-CLIP for transcriptome-wide identification of binding sites of RNA-binding proteins.
Methods. 2017 Apr 15;118-119:24-40. doi: 10.1016/j.ymeth.2016.10.007. Epub 2016 Oct 17.
5
PAR-CLIP and streamlined small RNA cDNA library preparation protocol for the identification of RNA binding protein target sites.
Methods. 2017 Apr 15;118-119:41-49. doi: 10.1016/j.ymeth.2016.11.009. Epub 2016 Nov 18.
7
Multiplexed transcriptome discovery of RNA-binding protein binding sites by antibody-barcode eCLIP.
Nat Methods. 2023 Jan;20(1):65-69. doi: 10.1038/s41592-022-01708-8. Epub 2022 Dec 22.
8
Computational analysis of CLIP-seq data.
Methods. 2017 Apr 15;118-119:60-72. doi: 10.1016/j.ymeth.2017.02.006. Epub 2017 Feb 22.
9
Principles of RNA processing from analysis of enhanced CLIP maps for 150 RNA binding proteins.
Genome Biol. 2020 Apr 6;21(1):90. doi: 10.1186/s13059-020-01982-9.
10
RNA interactome capture in yeast.
Methods. 2017 Apr 15;118-119:82-92. doi: 10.1016/j.ymeth.2016.12.008. Epub 2016 Dec 16.

引用本文的文献

3
Time-dependent regulation of cytokine production by RNA binding proteins defines T cell effector function.
Cell Rep. 2023 May 30;42(5):112419. doi: 10.1016/j.celrep.2023.112419. Epub 2023 Apr 18.
4
The global Protein-RNA interaction map of ESRP1 defines a post-transcriptional program that is essential for epithelial cell function.
iScience. 2022 Sep 23;25(10):105205. doi: 10.1016/j.isci.2022.105205. eCollection 2022 Oct 21.
5
Transcriptome-wide identification of RNA-binding protein binding sites using seCLIP-seq.
Nat Protoc. 2022 May;17(5):1223-1265. doi: 10.1038/s41596-022-00680-z. Epub 2022 Mar 23.
6
Precision analysis of mutant U2AF1 activity reveals deployment of stress granules in myeloid malignancies.
Mol Cell. 2022 Mar 17;82(6):1107-1122.e7. doi: 10.1016/j.molcel.2022.02.025.
7
Crosstalk between CRISPR-Cas9 and the human transcriptome.
Nat Commun. 2022 Mar 2;13(1):1125. doi: 10.1038/s41467-022-28719-5.
8
Inferring RNA-binding protein target preferences using adversarial domain adaptation.
PLoS Comput Biol. 2022 Feb 24;18(2):e1009863. doi: 10.1371/journal.pcbi.1009863. eCollection 2022 Feb.
9
Targeted RNA editing: novel tools to study post-transcriptional regulation.
Mol Cell. 2022 Jan 20;82(2):389-403. doi: 10.1016/j.molcel.2021.10.010. Epub 2021 Nov 4.
10
A Quantitative Heterokaryon Assay to Measure the Nucleocytoplasmic Shuttling of Proteins.
Bio Protoc. 2018 Sep 5;8(17):e2472. doi: 10.21769/BioProtoc.2472.

本文引用的文献

1
Robust transcriptome-wide discovery of RNA-binding protein binding sites with enhanced CLIP (eCLIP).
Nat Methods. 2016 Jun;13(6):508-14. doi: 10.1038/nmeth.3810. Epub 2016 Mar 28.
2
Resources for the Comprehensive Discovery of Functional RNA Elements.
Mol Cell. 2016 Mar 17;61(6):903-13. doi: 10.1016/j.molcel.2016.02.012.
3
Competition between DNA methylation and transcription factors determines binding of NRF1.
Nature. 2015 Dec 24;528(7583):575-9. doi: 10.1038/nature16462. Epub 2015 Dec 16.
4
CETCh-seq: CRISPR epitope tagging ChIP-seq of DNA-binding proteins.
Genome Res. 2015 Oct;25(10):1581-9. doi: 10.1101/gr.193540.115. Epub 2015 Sep 9.
5
RNA-binding proteins in neurodegeneration: Seq and you shall receive.
Trends Neurosci. 2015 Apr;38(4):226-36. doi: 10.1016/j.tins.2015.02.003. Epub 2015 Mar 9.
6
A census of human RNA-binding proteins.
Nat Rev Genet. 2014 Dec;15(12):829-45. doi: 10.1038/nrg3813. Epub 2014 Nov 4.
8
Genome engineering using the CRISPR-Cas9 system.
Nat Protoc. 2013 Nov;8(11):2281-2308. doi: 10.1038/nprot.2013.143. Epub 2013 Oct 24.
9
RNA-programmed genome editing in human cells.
Elife. 2013 Jan 29;2:e00471. doi: 10.7554/eLife.00471.
10
Multiplex genome engineering using CRISPR/Cas systems.
Science. 2013 Feb 15;339(6121):819-23. doi: 10.1126/science.1231143. Epub 2013 Jan 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验