Suppr超能文献

运动平滑度的近端-远端差异反映了生物力学的差异。

Proximal-distal differences in movement smoothness reflect differences in biomechanics.

作者信息

Salmond Layne H, Davidson Andrew D, Charles Steven K

机构信息

Department of Mechanical Engineering, Brigham Young University, Provo, Utah; and.

Department of Mechanical Engineering, Brigham Young University, Provo, Utah; and

出版信息

J Neurophysiol. 2017 Mar 1;117(3):1239-1257. doi: 10.1152/jn.00712.2015. Epub 2016 Dec 21.

Abstract

Smoothness is a hallmark of healthy movement. Past research indicates that smoothness may be a side product of a control strategy that minimizes error. However, this is not the only reason for smooth movements. Our musculoskeletal system itself contributes to movement smoothness: the mechanical impedance (inertia, damping, and stiffness) of our limbs and joints resists sudden change, resulting in a natural smoothing effect. How the biomechanics and neural control interact to result in an observed level of smoothness is not clear. The purpose of this study is to ) characterize the smoothness of wrist rotations, ) compare it with the smoothness of planar shoulder-elbow (reaching) movements, and ) determine the cause of observed differences in smoothness. Ten healthy subjects performed wrist and reaching movements involving different targets, directions, and speeds. We found wrist movements to be significantly less smooth than reaching movements and to vary in smoothness with movement direction. To identify the causes underlying these observations, we tested a number of hypotheses involving differences in bandwidth, signal-dependent noise, speed, impedance anisotropy, and movement duration. Our simulations revealed that proximal-distal differences in smoothness reflect proximal-distal differences in biomechanics: the greater impedance of the shoulder-elbow filters neural noise more than the wrist. In contrast, differences in signal-dependent noise and speed were not sufficiently large to recreate the observed differences in smoothness. We also found that the variation in wrist movement smoothness with direction appear to be caused by, or at least correlated with, differences in movement duration, not impedance anisotropy. This article presents the first thorough characterization of the smoothness of wrist rotations (flexion-extension and radial-ulnar deviation) and comparison with the smoothness of reaching (shoulder-elbow) movements. We found wrist rotations to be significantly less smooth than reaching movements and determined that this difference reflects proximal-distal differences in biomechanics: the greater impedance (inertia, damping, stiffness) of the shoulder-elbow filters noise in the command signal more than the impedance of the wrist.

摘要

流畅性是健康运动的一个标志。过去的研究表明,流畅性可能是一种将误差最小化的控制策略的副产品。然而,这并不是动作流畅的唯一原因。我们的肌肉骨骼系统本身也有助于运动的流畅性:我们四肢和关节的机械阻抗(惯性、阻尼和刚度)会抵抗突然的变化,从而产生自然的平滑效果。生物力学和神经控制如何相互作用以产生观察到的流畅程度尚不清楚。本研究的目的是:(1)表征腕关节旋转的流畅性;(2)将其与平面肩 - 肘(伸展)运动的流畅性进行比较;(3)确定观察到的流畅性差异的原因。十名健康受试者进行了涉及不同目标、方向和速度的腕关节和伸展运动。我们发现腕关节运动的流畅性明显低于伸展运动,并且流畅性会随运动方向而变化。为了确定这些观察结果背后的原因,我们测试了一些假设,这些假设涉及带宽、信号相关噪声、速度、阻抗各向异性和运动持续时间的差异。我们的模拟表明,近端 - 远端在流畅性上的差异反映了生物力学上的近端 - 远端差异:肩 - 肘的更大阻抗比腕关节更能过滤神经噪声。相比之下,信号相关噪声和速度的差异不够大,无法重现观察到的流畅性差异。我们还发现,腕关节运动流畅性随方向的变化似乎是由运动持续时间的差异引起的,或者至少与之相关,而不是阻抗各向异性。本文首次全面表征了腕关节旋转(屈伸和桡尺偏斜)的流畅性,并与伸展(肩 - 肘)运动的流畅性进行了比较。我们发现腕关节旋转的流畅性明显低于伸展运动,并确定这种差异反映了生物力学上的近端 - 远端差异:肩 - 肘的更大阻抗(惯性、阻尼、刚度)比腕关节更能过滤指令信号中的噪声。

相似文献

1
Proximal-distal differences in movement smoothness reflect differences in biomechanics.
J Neurophysiol. 2017 Mar 1;117(3):1239-1257. doi: 10.1152/jn.00712.2015. Epub 2016 Dec 21.
2
Dynamics of wrist rotations.
J Biomech. 2011 Feb 24;44(4):614-21. doi: 10.1016/j.jbiomech.2010.11.016. Epub 2010 Dec 4.
4
Dynamics of wrist and forearm rotations.
J Biomech. 2014 Aug 22;47(11):2779-85. doi: 10.1016/j.jbiomech.2014.01.053. Epub 2014 Mar 13.
5
The leading joint hypothesis for spatial reaching arm motions.
Exp Brain Res. 2013 Feb;224(4):591-603. doi: 10.1007/s00221-012-3335-x. Epub 2012 Dec 11.
6
Energy-related optimal control accounts for gravitational load: comparing shoulder, elbow, and wrist rotations.
J Neurophysiol. 2014 Jan;111(1):4-16. doi: 10.1152/jn.01029.2012. Epub 2013 Oct 16.
7
Control of 3D limb dynamics in unconstrained overarm throws of different speeds performed by skilled baseball players.
J Neurophysiol. 2007 Jan;97(1):680-91. doi: 10.1152/jn.00348.2006. Epub 2006 Nov 1.
8
General coordination of shoulder, elbow and wrist dynamics during multijoint arm movements.
Exp Brain Res. 2002 Jan;142(2):163-80. doi: 10.1007/s002210100882. Epub 2001 Dec 6.
9
Stiffness, not inertial coupling, determines path curvature of wrist motions.
J Neurophysiol. 2012 Feb;107(4):1230-40. doi: 10.1152/jn.00428.2011. Epub 2011 Nov 30.
10
Compensating for intersegmental dynamics across the shoulder, elbow, and wrist joints during feedforward and feedback control.
J Neurophysiol. 2017 Oct 1;118(4):1984-1997. doi: 10.1152/jn.00178.2017. Epub 2017 Jul 12.

引用本文的文献

1
Impact of expressive intentions on upper-body kinematics in two expert pianists.
Front Psychol. 2025 Jan 13;15:1504456. doi: 10.3389/fpsyg.2024.1504456. eCollection 2024.
2
Extended physiological proprioception is affected by transhumeral Socket-Suspended prosthesis use.
J Biomech. 2024 Mar;166:112054. doi: 10.1016/j.jbiomech.2024.112054. Epub 2024 Mar 20.
3
Adding mechanical vibration to a half squat with different ballasts and rhythms increases movement variability.
PLoS One. 2023 Jul 27;18(7):e0284863. doi: 10.1371/journal.pone.0284863. eCollection 2023.
4
Movement smoothness during dynamic postural control to a static target differs between autistic and neurotypical children.
Gait Posture. 2023 Jan;99:76-82. doi: 10.1016/j.gaitpost.2022.10.015. Epub 2022 Oct 28.
5
The neural mechanisms of manual dexterity.
Nat Rev Neurosci. 2021 Dec;22(12):741-757. doi: 10.1038/s41583-021-00528-7. Epub 2021 Oct 28.
6
Estimating Movement Smoothness From Inertial Measurement Units.
Front Bioeng Biotechnol. 2021 Jan 14;8:558771. doi: 10.3389/fbioe.2020.558771. eCollection 2020.
7
Biomechanical muscle stiffness measures of extensor digitorum explain potential mechanism of McArdle sign.
Clin Biomech (Bristol). 2021 Feb;82:105277. doi: 10.1016/j.clinbiomech.2021.105277. Epub 2021 Jan 23.
9
Smoothness: an Unexplored Window into Coordinated Running Proficiency.
Sports Med Open. 2019 Nov 9;5(1):43. doi: 10.1186/s40798-019-0215-y.
10
A survey of human shoulder functional kinematic representations.
Med Biol Eng Comput. 2019 Feb;57(2):339-367. doi: 10.1007/s11517-018-1903-3. Epub 2018 Oct 26.

本文引用的文献

1
The challenge of understanding the brain: where we stand in 2015.
Neuron. 2015 May 20;86(4):864-882. doi: 10.1016/j.neuron.2015.03.032.
2
Dynamics of wrist and forearm rotations.
J Biomech. 2014 Aug 22;47(11):2779-85. doi: 10.1016/j.jbiomech.2014.01.053. Epub 2014 Mar 13.
3
Position-dependent characterization of passive wrist stiffness.
IEEE Trans Biomed Eng. 2014 Aug;61(8):2235-44. doi: 10.1109/TBME.2014.2313532. Epub 2014 Mar 25.
4
A survey on robotic devices for upper limb rehabilitation.
J Neuroeng Rehabil. 2014 Jan 9;11:3. doi: 10.1186/1743-0003-11-3.
5
Perturbation amplitude affects linearly estimated neuromechanical wrist joint properties.
IEEE Trans Biomed Eng. 2014 Apr;61(4):1005-14. doi: 10.1109/TBME.2013.2290022. Epub 2013 Nov 8.
6
Energy-related optimal control accounts for gravitational load: comparing shoulder, elbow, and wrist rotations.
J Neurophysiol. 2014 Jan;111(1):4-16. doi: 10.1152/jn.01029.2012. Epub 2013 Oct 16.
7
Experimental measure of arm stiffness during single reaching movements with a time-frequency analysis.
J Neurophysiol. 2013 Nov;110(10):2484-96. doi: 10.1152/jn.01013.2012. Epub 2013 Aug 14.
8
Biomechanical constraints on the feedforward regulation of endpoint stiffness.
J Neurophysiol. 2012 Oct;108(8):2083-91. doi: 10.1152/jn.00330.2012. Epub 2012 Jul 25.
9
The passive stiffness of the wrist and forearm.
J Neurophysiol. 2012 Aug;108(4):1158-66. doi: 10.1152/jn.01014.2011. Epub 2012 May 30.
10
Measuring multi-joint stiffness during single movements: numerical validation of a novel time-frequency approach.
PLoS One. 2012;7(3):e33086. doi: 10.1371/journal.pone.0033086. Epub 2012 Mar 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验