O'Toole Sean M, Ferrer Monica M, Mekonnen Jennifer, Zhang Haihan, Shima Yasuyuki, Ladle David R, Nelson Sacha B
Department of Biology and Center for Behavioral Genomics, Brandeis University, Waltham, Massachusetts; and.
Department of Neuroscience, Cell Biology, and Physiology, Wright State University, Dayton, Ohio.
J Neurophysiol. 2017 Mar 1;117(3):1057-1069. doi: 10.1152/jn.00763.2016. Epub 2016 Dec 21.
Neuronal cell identity is established during development and must be maintained throughout an animal's life (Fishell G, Heintz N. 80: 602-612, 2013). Transcription factors critical for establishing neuronal identity can be required for maintaining it (Deneris ES, Hobert O. 17: 899-907, 2014). Posttranscriptional regulation also plays an important role in neuronal differentiation (Bian S, Sun T. 44: 359-373, 2011), but its role in maintaining cell identity is less established. To better understand how posttranscriptional regulation might contribute to cell identity, we examined the proprioceptive neurons in the dorsal root ganglion (DRG), a highly specialized sensory neuron class, with well-established properties that distinguish them from other neurons in the ganglion. By conditionally ablating Dicer in mice, using parvalbumin (Pvalb)-driven Cre recombinase, we impaired posttranscriptional regulation in the proprioceptive sensory neuron population. Knockout (KO) animals display a progressive form of ataxia at the beginning of the fourth postnatal week that is accompanied by a cell death within the DRG. Before cell loss, expression profiling shows a reduction of proprioceptor specific genes and an increased expression of nonproprioceptive genes normally enriched in other ganglion neurons. Furthermore, although central connections of these neurons are intact, the peripheral connections to the muscle are functionally impaired. Posttranscriptional regulation is therefore necessary to retain the transcriptional identity and support functional specialization of the proprioceptive sensory neurons. We have demonstrated that selectively impairing Dicer in parvalbumin-positive neurons, which include the proprioceptors, triggers behavioral changes, a lack of muscle connectivity, and a loss of transcriptional identity as observed through RNA sequencing. These results suggest that Dicer and, most likely by extension, microRNAs are crucially important for maintaining proprioception. Additionally, this study hints at the larger question of how neurons maintain their functional and molecular specificity.
神经元细胞身份在发育过程中确立,并且在动物的整个生命过程中必须得以维持(菲舍尔 G,海因茨 N. 80: 602 - 612, 2013)。对于确立神经元身份至关重要的转录因子可能也是维持该身份所必需的(德内里斯 ES,霍伯特 O. 17: 899 - 907, 2014)。转录后调控在神经元分化中也起着重要作用(边 S,孙 T. 44: 359 - 373, 2011),但其在维持细胞身份方面的作用尚不明确。为了更好地理解转录后调控如何有助于细胞身份的维持,我们研究了背根神经节(DRG)中的本体感觉神经元,这是一类高度特化的感觉神经元,具有明确的特性,使其与神经节中的其他神经元区分开来。通过使用小白蛋白(Pvalb)驱动的 Cre 重组酶在小鼠中条件性敲除 Dicer,我们破坏了本体感觉神经元群体中的转录后调控。基因敲除(KO)动物在出生后第四周开始表现出进行性共济失调,同时伴有 DRG 内的细胞死亡。在细胞丢失之前,表达谱分析显示本体感受器特异性基因表达减少,而通常在其他神经节神经元中富集的非本体感受性基因表达增加。此外,尽管这些神经元的中枢连接完整,但与肌肉的外周连接在功能上受损。因此,转录后调控对于维持本体感觉神经元的转录身份和支持功能特化是必要的。我们已经证明,在包括本体感受器在内的小白蛋白阳性神经元中选择性地破坏 Dicer,会引发行为变化、肌肉连接缺失以及通过 RNA 测序观察到的转录身份丧失。这些结果表明,Dicer 以及很可能由此延伸的微小 RNA 对于维持本体感觉至关重要。此外,这项研究暗示了一个更大的问题,即神经元如何维持其功能和分子特异性。