Suppr超能文献

优化离子半导体测序数据分析方法以识别临床组织样本中癌细胞基因组中的体细胞突变。

Optimizing an ion semiconductor sequencing data analysis method to identify somatic mutations in the genomes of cancer cells in clinical tissue samples.

作者信息

Nagashima Takeshi, Shimoda Yuji, Tanabe Tomoe, Naruoka Akane, Saito Junko, Serizawa Masakuni, Ohshima Keiichi, Urakami Kenichi, Ohnami Sumiko, Ohnami Shumpei, Mochizuki Tohru, Kusuhara Masatoshi, Yamaguchi Ken

机构信息

Cancer Diagnostics Research Division, Shizuoka Cancer Center Research Institute.

出版信息

Biomed Res. 2016;37(6):359-366. doi: 10.2220/biomedres.37.359.

Abstract

Identification of causal genomic alterations is an indispensable step in the implementation of personalized cancer medicine. Analytical methods play a central role in identifying such changes because of the vast amount of data produced by next generation sequencer. Most analytical techniques are designed for the Illumina platform and are therefore suboptimal for analyzing datasets generated by whole exome sequencing (WES) using the Ion Proton System. Accurate identification of somatic mutations requires the characterization of platform-dependent error profiles and genomic properties that affect the accuracy of sequence data as well as platform-oriented optimization of the pipeline. Therefore, we used the Ion Proton System to perform WES of DNAs isolated from tumor and matched control tissues of 1,058 patients with cancer who were treated at the Shizuoka Cancer Center Hospital. Among the initially identified candidate somatic single-nucleotide variants (SNVs), 10,279 were validated by manual inspection of the WES data followed by Sanger sequencing. These validated SNVs were used as an objective standard to determine an optimum cutoff value to improve the pipeline. Using this optimized pipeline analysis, 189,381 SNVs were identified in 1,101 samples. The analytical technique presented here is a useful resource for conducting clinical WES, particularly using semiconductor-based sequencing technology.

摘要

识别因果基因组改变是实施个性化癌症医学不可或缺的一步。由于下一代测序仪产生的海量数据,分析方法在识别此类变化中起着核心作用。大多数分析技术是为Illumina平台设计的,因此对于使用Ion Proton系统进行的全外显子组测序(WES)所生成的数据集而言并非最优。准确识别体细胞突变需要表征影响序列数据准确性的平台依赖性错误特征和基因组特性,以及针对该平台对流程进行优化。因此,我们使用Ion Proton系统对静冈癌症中心医院收治的1058例癌症患者的肿瘤组织及配对对照组织中分离出的DNA进行了WES。在最初鉴定出的候选体细胞单核苷酸变异(SNV)中,通过对WES数据进行人工检查并随后进行桑格测序,验证了10279个变异。这些经过验证的SNV被用作确定最佳截止值以改进流程的客观标准。使用这种优化的流程分析,在1101个样本中鉴定出了189381个SNV。本文介绍的分析技术是进行临床WES的有用资源,特别是使用基于半导体的测序技术时。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验