Suppr超能文献

牛卵巢卵泡细胞和黄体细胞的转录组

Transcriptomes of bovine ovarian follicular and luteal cells.

作者信息

Romereim Sarah M, Summers Adam F, Pohlmeier William E, Zhang Pan, Hou Xiaoying, Talbott Heather A, Cushman Robert A, Wood Jennifer R, Davis John S, Cupp Andrea S

机构信息

University of Nebraska-Lincoln; Animal Science, P.O. Box 830908, C203 ANSC, Lincoln, NE 68583-0908, USA.

University of Nebraska Medical Center; 983255 Nebraska Medical Center, Omaha, NE 68198-3255, USA.

出版信息

Data Brief. 2016 Dec 10;10:335-339. doi: 10.1016/j.dib.2016.11.093. eCollection 2017 Feb.

Abstract

Affymetrix Bovine GeneChip® Gene 1.0 ST Array RNA expression analysis was performed on four somatic ovarian cell types: the granulosa cells (GCs) and theca cells (TCs) of the dominant follicle and the large luteal cells (LLCs) and small luteal cells (SLCs) of the corpus luteum. The normalized linear microarray data was deposited to the NCBI GEO repository (GSE83524). Subsequent ANOVA determined genes that were enriched (≥2 fold more) or decreased (≤-2 fold less) in one cell type compared to all three other cell types, and these analyzed and filtered datasets are presented as tables. Genes that were shared in enriched expression in both follicular cell types (GCs and TCs) or in both luteal cells types (LLCs and SLCs) are also reported in tables. The standard deviation of the analyzed array data in relation to the log of the expression values is shown as a figure. These data have been further analyzed and interpreted in the companion article "Gene expression profiling of ovarian follicular and luteal cells provides insight into cellular identities and functions" (Romereim et al., 2017) [1].

摘要

对四种卵巢体细胞类型进行了Affymetrix牛基因芯片®基因1.0 ST阵列RNA表达分析:优势卵泡的颗粒细胞(GCs)和卵泡膜细胞(TCs),以及黄体的大黄体细胞(LLCs)和小黄体细胞(SLCs)。标准化的线性微阵列数据已存入NCBI GEO数据库(GSE83524)。随后的方差分析确定了与其他三种细胞类型相比,在一种细胞类型中富集(≥2倍以上)或减少(≤ -2倍以下)的基因,这些经过分析和筛选的数据集以表格形式呈现。在两种卵泡细胞类型(GCs和TCs)或两种黄体细胞类型(LLCs和SLCs)中富集表达的共同基因也在表格中报告。分析的阵列数据相对于表达值对数的标准差以图表形式显示。这些数据已在配套文章《卵巢卵泡和黄体细胞的基因表达谱分析有助于深入了解细胞特性和功能》(Romereim等人,2017年)[1]中进行了进一步分析和解读。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5156/5157705/5633ec575aad/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验