Department of Chemistry, University of Illinois at Chicago , Chicago, Illinois 60607, United States.
Chem Rev. 2017 Apr 12;117(7):4961-4982. doi: 10.1021/acs.chemrev.6b00343. Epub 2016 Dec 22.
Molecule-surface interactions and processes are at the heart of many technologies, including heterogeneous catalysis, organic photovoltaics, and nanoelectronics, yet they are rarely well understood at the molecular level. Given the inhomogeneous nature of surfaces, molecular properties often vary among individual surface sites, information that is lost in ensemble-averaged techniques. In order to access such site-resolved behavior, a technique must possess lateral resolution comparable to the size of surface sites under study, analytical power capable of examining chemical properties, and single-molecule sensitivity. Tip-enhanced Raman spectroscopy (TERS), wherein light is confined and amplified at the apex of a nanoscale plasmonic probe, meets these criteria. In ultrahigh vacuum (UHV), TERS can be performed in pristine environments, allowing for molecular-resolution imaging, low-temperature operation, minimized tip and molecular degradation, and improved stability in the presence of ultrafast irradiation. The aim of this review is to give an overview of TERS experiments performed in UHV environments and to discuss how recent reports will guide future endeavors. The advances made in the field thus far demonstrate the utility of TERS as an approach to interrogate single-molecule properties, reactions, and dynamics with spatial resolution below 1 nm.
分子-表面相互作用和过程是许多技术的核心,包括多相催化、有机光伏和纳米电子学,但它们在分子水平上很少被很好地理解。鉴于表面的不均匀性质,分子性质通常在单个表面位置之间变化,而这些信息在平均技术中丢失。为了获得这种具有站点分辨率的行为,一种技术必须具有与所研究表面位置大小相当的横向分辨率、能够检查化学性质的分析能力以及单分子灵敏度。针尖增强拉曼光谱(TERS),其中光在纳米级等离子体探针的尖端被限制和放大,满足这些标准。在超高真空(UHV)中,可以在原始环境中进行 TERS,从而实现分子分辨率成像、低温操作、最小化针尖和分子降解以及在超快辐照下提高稳定性。本综述的目的是概述在 UHV 环境中进行的 TERS 实验,并讨论最近的报告将如何指导未来的努力。迄今为止,该领域的进展表明,TERS 作为一种方法具有实用性,可以在低于 1nm 的空间分辨率下探测单分子的性质、反应和动力学。