Larsson Linnéa, Nyström Marcus, Ardö Håkan, Åström Kalle, Stridh Martin
Department of Biomedical Engineering, Lund University, Lund,
Lund Humanities Laboratory, Lund University, Lund,
J Vis. 2016 Dec 1;16(15):20. doi: 10.1167/16.15.20.
An increasing number of researchers record binocular eye-tracking signals from participants viewing moving stimuli, but the majority of event-detection algorithms are monocular and do not consider smooth pursuit movements. The purposes of the present study are to develop an algorithm that discriminates between fixations and smooth pursuit movements in binocular eye-tracking signals and to evaluate its performance using an automated video-based strategy. The proposed algorithm uses a clustering approach that takes both spatial and temporal aspects of the binocular eye-tracking signal into account, and is evaluated using a novel video-based evaluation strategy based on automatically detected moving objects in the video stimuli. The binocular algorithm detects 98% of fixations in image stimuli compared to 95% when only one eye is used, while for video stimuli, both the binocular and monocular algorithms detect around 40% of smooth pursuit movements. The present article shows that using binocular information for discrimination of fixations and smooth pursuit movements is advantageous in static stimuli, without impairing the algorithm's ability to detect smooth pursuit movements in video and moving-dot stimuli. With an automated evaluation strategy, time-consuming manual annotations are avoided and a larger amount of data can be used in the evaluation process.
越来越多的研究人员记录参与者观看动态刺激时的双眼眼动追踪信号,但大多数事件检测算法是单眼的,并未考虑平稳跟踪运动。本研究的目的是开发一种算法,用于区分双眼眼动追踪信号中的注视和平稳跟踪运动,并使用基于视频的自动化策略评估其性能。所提出的算法采用一种聚类方法,该方法兼顾了双眼眼动追踪信号的空间和时间维度,并使用基于视频刺激中自动检测到的移动物体的新型基于视频的评估策略进行评估。与仅使用一只眼睛时95%的注视检测率相比,双眼算法在图像刺激中能检测到98%的注视;而对于视频刺激,双眼算法和单眼算法检测到的平稳跟踪运动均约为40%。本文表明,在静态刺激中,利用双眼信息区分注视和平稳跟踪运动具有优势,且不会削弱算法检测视频和移动点刺激中平稳跟踪运动的能力。通过自动化评估策略,避免了耗时的人工标注,并且在评估过程中可以使用更多的数据。