Fundamental Neurobiology, Krembil Research Institute, University Health Network, M5T 2S8 Toronto, Ontario, Canada; Physical Sciences, Sunnybrook Research Institute, M4N 3M5 Toronto, Ontario, Canada.
Fundamental Neurobiology, Krembil Research Institute, University Health Network, M5T 2S8 Toronto, Ontario, Canada.
Neurobiol Dis. 2017 May;101:1-7. doi: 10.1016/j.nbd.2016.12.017. Epub 2016 Dec 20.
Extracellular potassium concentration, [K], is a major determinant of neuronal excitability. In the healthy brain, [K] levels are tightly controlled. During seizures, [K] increases up to 15mM and is thought to cause seizures due to its depolarizing effect. Although astrocytes have been suggested to play a key role in the redistribution (or spatial buffering) of excess K through Connexin-43 (Cx43)-based Gap Junctions (GJs), the relation between this dynamic regulatory process and seizure generation remains unknown. Here we contrasted the role of astrocytic GJs and hemichannels by studying the effect of GJ and hemichannel blockers on [K] regulation in vivo. [K] was measured by K-sensitive microelectrodes. Neuronal excitability was estimated by local field potential (LFP) responses to forepaw stimulation and changes in the power of resting state activity. Starting at the baseline [K] level of 1.61±0.3mM, cortical microinjection of CBX, a broad spectrum connexin channel blocker, increased [K] to 11±3mM, Cx43 GJ/hemichannel blocker Gap27 increased it from 1.9±0.7 to 9±1mM. At these [K] levels, no seizures were observed. Cx43 hemichannel blockade with TAT-Gap19 increased [K] by only ~1mM. Microinjection of 4-aminopyridine, a known convulsant, increased [K] to ~10mM and induced spontaneously recurring seizures, whereas direct application of K did not trigger seizure activity. These findings are the first in vivo demonstration that astrocytic GJs are major determinants for the spatial buffering of [K] and that an increase in [K] alone does not trigger seizures in the neocortex.
细胞外钾浓度 ([K]) 是神经元兴奋性的主要决定因素。在健康的大脑中,[K] 水平受到严格控制。在癫痫发作期间,[K] 增加到 15mM 左右,被认为是由于其去极化作用而导致癫痫发作。尽管星形胶质细胞被认为在通过缝隙连接 (GJ) 上的 Connexin-43 (Cx43) 进行多余 [K] 的重分布(或空间缓冲)中发挥关键作用,但这个动态调节过程与癫痫发作之间的关系仍不清楚。在这里,我们通过研究 GJ 和半通道阻滞剂对体内 [K] 调节的影响,对比了星形胶质细胞 GJ 和半通道的作用。通过 K 敏感微电极测量 [K]。通过局部场电位 (LFP) 对前爪刺激的反应和静息状态活动的功率变化来估计神经元兴奋性。从基线 [K] 水平 1.61±0.3mM 开始,皮质微注射广谱缝隙连接通道阻滞剂 CBX 将 [K] 增加到 11±3mM,Cx43 GJ/半通道阻滞剂 Gap27 将其从 1.9±0.7 增加到 9±1mM。在这些 [K] 水平下,未观察到癫痫发作。用 TAT-Gap19 阻断 Cx43 半通道仅增加 [K] 约 1mM。已知的致惊厥剂 4-氨基吡啶的微注射将 [K] 增加到约 10mM,并引起自发反复发作的癫痫发作,而直接应用 K 则不会引发癫痫发作活动。这些发现是体内首次证明星形胶质细胞 GJ 是 [K] 空间缓冲的主要决定因素,并且 [K] 的单独增加不会在新皮质中引发癫痫发作。