Khalaf-Nazzal Reham, Stouffer Melissa A, Olaso Robert, Muresan Leila, Roumegous Audrey, Lavilla Virginie, Carpentier Wassila, Moutkine Imane, Dumont Sylvie, Albaud Benoit, Cagnard Nicolas, Roest Crollius Hugues, Francis Fiona
INSERM UMR-S 839, Paris.
Sorbonne Universités, Université Pierre et Marie Curie, Paris.
Hum Mol Genet. 2017 Jan 1;26(1):90-108. doi: 10.1093/hmg/ddw370.
Human doublecortin (DCX) mutations are associated with severe brain malformations leading to aberrant neuron positioning (heterotopia), intellectual disability and epilepsy. The Dcx protein plays a key role in neuronal migration, and hippocampal pyramidal neurons in Dcx knockout (KO) mice are disorganized. The single CA3 pyramidal cell layer observed in wild type (WT) is present as two abnormal layers in the KO, and CA3 KO pyramidal neurons are more excitable than WT. Dcx KO mice also exhibit spontaneous epileptic activity originating in the hippocampus. It is unknown, however, how hyperexcitability arises and why two CA3 layers are observed.Transcriptome analyses were performed to search for perturbed postnatal gene expression, comparing Dcx KO CA3 pyramidal cell layers with WT. Gene expression changes common to both KO layers indicated mitochondria and Golgi apparatus anomalies, as well as increased cell stress. Intriguingly, gene expression analyses also suggested that the KO layers differ significantly from each other, particularly in terms of maturity. Layer-specific molecular markers and BrdU birthdating to mark the final positions of neurons born at distinct timepoints revealed inverted layering of the CA3 region in Dcx KO animals. Notably, many early-born 'outer boundary' neurons are located in an inner position in the Dcx KO CA3, superficial to other pyramidal neurons. This abnormal positioning likely affects cell morphology and connectivity, influencing network function. Dissecting this Dcx KO phenotype sheds light on coordinated developmental mechanisms of neuronal subpopulations, as well as gene expression patterns contributing to a bi-layered malformation associated with epilepsy.
人类双皮质素(DCX)突变与严重的脑畸形相关,可导致神经元定位异常(异位)、智力残疾和癫痫。Dcx蛋白在神经元迁移中起关键作用,Dcx基因敲除(KO)小鼠的海马锥体细胞排列紊乱。野生型(WT)小鼠中观察到的单一CA3锥体细胞层在KO小鼠中呈现为两个异常层,并且KO小鼠的CA3锥体细胞比WT小鼠的更易兴奋。Dcx KO小鼠还表现出源自海马体的自发性癫痫活动。然而,尚不清楚这种过度兴奋性是如何产生的,以及为何会观察到两个CA3层。进行了转录组分析以寻找出生后受干扰的基因表达,将Dcx KO小鼠的CA3锥体细胞层与WT小鼠进行比较。两个KO层共有的基因表达变化表明存在线粒体和高尔基体异常,以及细胞应激增加。有趣的是,基因表达分析还表明,这两个KO层彼此之间存在显著差异,特别是在成熟度方面。使用层特异性分子标记和BrdU出生标记来标记在不同时间点出生的神经元的最终位置,结果显示Dcx KO动物的CA3区域存在分层倒置。值得注意的是,许多早期出生的“外边界”神经元位于Dcx KO小鼠CA3区域的内部位置,比其他锥体细胞更靠近表面。这种异常定位可能会影响细胞形态和连接性,进而影响网络功能。剖析这种Dcx KO表型有助于揭示神经元亚群的协调发育机制,以及导致与癫痫相关的双层畸形的基因表达模式。