INSERM UMR-S 1270, Paris 75005, France; Sorbonne Université, Campus Pierre et Marie Curie, Paris 75005, France; Institut du Fer à Moulin, Paris 75005, France.
Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine (CNRGH), 91057 Evry, France.
Neurobiol Dis. 2022 Jun 15;168:105702. doi: 10.1016/j.nbd.2022.105702. Epub 2022 Mar 24.
Human doublecortin (DCX) mutations are associated with severe brain malformations leading to aberrant neuron positioning (heterotopia), intellectual disability and epilepsy. DCX is a microtubule-associated protein which plays a key role during neurodevelopment in neuronal migration and differentiation. Dcx knockout (KO) mice show disorganized hippocampal pyramidal neurons. The CA2/CA3 pyramidal cell layer is present as two abnormal layers and disorganized CA3 KO pyramidal neurons are also more excitable than wild-type (WT) cells. To further identify abnormalities, we characterized Dcx KO hippocampal neurons at subcellular, molecular and ultrastructural levels. Severe defects were observed in mitochondria, affecting number and distribution. Also, the Golgi apparatus was visibly abnormal, increased in volume and abnormally organized. Transcriptome analyses from laser microdissected hippocampal tissue at postnatal day 60 (P60) highlighted organelle abnormalities. Ultrastructural studies of CA3 cells performed in P60 (young adult) and > 9 months (mature) tissue showed that organelle defects are persistent throughout life. Locomotor activity and fear memory of young and mature adults were also abnormal: Dcx KO mice consistently performed less well than WT littermates, with defects becoming more severe with age. Thus, we show that disruption of a neurodevelopmentally-regulated gene can lead to permanent organelle anomalies contributing to abnormal adult behavior.
人类双皮质素 (DCX) 突变与严重的脑畸形有关,导致异常神经元定位(异位)、智力障碍和癫痫。DCX 是一种微管相关蛋白,在神经元迁移和分化的神经发育过程中发挥关键作用。Dcx 敲除 (KO) 小鼠显示出海马锥体神经元排列紊乱。CA2/CA3 锥体细胞层存在两个异常层,KO 锥体神经元的 CA3 排列也比野生型 (WT) 细胞更兴奋。为了进一步确定异常情况,我们在亚细胞、分子和超微结构水平对 Dcx KO 海马神经元进行了特征描述。线粒体受到严重影响,数量和分布均出现异常。高尔基体也明显异常,体积增大且排列异常。来自出生后 60 天 (P60) 激光微切割海马组织的转录组分析突出了细胞器异常。在 P60(年轻成年)和 >9 个月(成熟)组织中对 CA3 细胞进行的超微结构研究表明,细胞器缺陷在整个生命周期中持续存在。年轻和成年动物的运动活动和恐惧记忆也异常:Dcx KO 小鼠的表现始终不如 WT 同窝仔,且缺陷随着年龄的增长而变得更加严重。因此,我们表明,神经发育调节基因的破坏会导致永久性细胞器异常,从而导致异常的成年行为。