Suppr超能文献

相似文献

1
Fitness Trade-Offs Lead to Suppressor Tolerance in Yeast.
Mol Biol Evol. 2017 Jan;34(1):110-118. doi: 10.1093/molbev/msw225. Epub 2016 Oct 20.
2
QTL mapping of freezing tolerance: links to fitness and adaptive trade-offs.
Mol Ecol. 2014 Sep;23(17):4304-15. doi: 10.1111/mec.12862. Epub 2014 Aug 12.
3
Constraints, Trade-offs and the Currency of Fitness.
J Mol Evol. 2016 Mar;82(2-3):117-27. doi: 10.1007/s00239-016-9730-3. Epub 2016 Feb 26.
4
Genetic basis of local adaptation and flowering time variation in Arabidopsis lyrata.
Mol Ecol. 2013 Feb;22(3):709-23. doi: 10.1111/j.1365-294X.2012.05678.x. Epub 2012 Jun 25.
5
Is local adaptation in Mimulus guttatus caused by trade-offs at individual loci?
Mol Ecol. 2010 Jul;19(13):2739-53. doi: 10.1111/j.1365-294X.2010.04680.x. Epub 2010 Jun 7.
9
Concerted evolution of life stage performances signals recent selection on yeast nitrogen use.
Mol Biol Evol. 2015 Jan;32(1):153-61. doi: 10.1093/molbev/msu285. Epub 2014 Oct 27.
10
Strong selection genome-wide enhances fitness trade-offs across environments and episodes of selection.
Evolution. 2014 Jan;68(1):16-31. doi: 10.1111/evo.12259. Epub 2013 Sep 16.

引用本文的文献

1
The yeast Mkt1/Pbp1 complex promotes adaptive responses to respiratory growth.
J Cell Biol. 2025 Oct 6;224(10). doi: 10.1083/jcb.202411169. Epub 2025 Aug 13.
4
Complex modifier landscape underlying genetic background effects.
Proc Natl Acad Sci U S A. 2019 Mar 12;116(11):5045-5054. doi: 10.1073/pnas.1820915116. Epub 2019 Feb 25.
5
Genetic Network Complexity Shapes Background-Dependent Phenotypic Expression.
Trends Genet. 2018 Aug;34(8):578-586. doi: 10.1016/j.tig.2018.05.006. Epub 2018 Jun 11.
6
Genetic suppression: Extending our knowledge from lab experiments to natural populations.
Bioessays. 2017 Jul;39(7). doi: 10.1002/bies.201700023. Epub 2017 May 4.

本文引用的文献

2
Dosage compensation can buffer copy-number variation in wild yeast.
Elife. 2015 May 8;4:e05462. doi: 10.7554/eLife.05462.
4
Genetic mapping of MAPK-mediated complex traits Across S. cerevisiae.
PLoS Genet. 2015 Jan 8;11(1):e1004913. doi: 10.1371/journal.pgen.1004913. eCollection 2015 Jan.
5
Genetic architecture of ethanol-responsive transcriptome variation in Saccharomyces cerevisiae strains.
Genetics. 2014 Sep;198(1):369-82. doi: 10.1534/genetics.114.167429. Epub 2014 Jun 26.
6
Chromosomal rearrangements as a major mechanism in the onset of reproductive isolation in Saccharomyces cerevisiae.
Curr Biol. 2014 May 19;24(10):1153-9. doi: 10.1016/j.cub.2014.03.063. Epub 2014 May 8.
7
gitter: a robust and accurate method for quantification of colony sizes from plate images.
G3 (Bethesda). 2014 Mar 20;4(3):547-52. doi: 10.1534/g3.113.009431.
8
A high-definition view of functional genetic variation from natural yeast genomes.
Mol Biol Evol. 2014 Apr;31(4):872-88. doi: 10.1093/molbev/msu037. Epub 2014 Jan 14.
9
The molecular basis of phenotypic variation in yeast.
Curr Opin Genet Dev. 2013 Dec;23(6):672-7. doi: 10.1016/j.gde.2013.10.005. Epub 2013 Nov 21.
10
Integrative phenomics reveals insight into the structure of phenotypic diversity in budding yeast.
Genome Res. 2013 Sep;23(9):1496-504. doi: 10.1101/gr.155762.113. Epub 2013 May 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验