Suppr超能文献

磷酸化泛素样结构域的结构以及对PINK1介导的帕金森蛋白激活的见解。

Structure of phosphorylated UBL domain and insights into PINK1-orchestrated parkin activation.

作者信息

Aguirre Jacob D, Dunkerley Karen M, Mercier Pascal, Shaw Gary S

机构信息

Department of Biochemistry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON N6A 3K7, Canada.

Department of Biochemistry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON N6A 3K7, Canada

出版信息

Proc Natl Acad Sci U S A. 2017 Jan 10;114(2):298-303. doi: 10.1073/pnas.1613040114. Epub 2016 Dec 22.

Abstract

Mutations in PARK2 and PARK6 genes are responsible for the majority of hereditary Parkinson's disease cases. These genes encode the E3 ubiquitin ligase parkin and the protein kinase PTEN-induced kinase 1 (PINK1), respectively. Together, parkin and PINK1 regulate the mitophagy pathway, which recycles damaged mitochondria following oxidative stress. Native parkin is inactive and exists in an autoinhibited state mediated by its ubiquitin-like (UBL) domain. PINK1 phosphorylation of serine 65 in parkin's UBL and serine 65 of ubiquitin fully activate ubiquitin ligase activity; however, a structural rationale for these observations is not clear. Here, we report the structure of the phosphorylated UBL domain from parkin. We find that destabilization of the UBL results from rearrangements to hydrophobic core packing that modify its structure. Altered surface electrostatics from the phosphoserine group disrupt its intramolecular association, resulting in poorer autoinhibition in phosphorylated parkin. Further, we show that phosphorylation of both the UBL domain and ubiquitin are required to activate parkin by releasing the UBL domain, forming an extended structure needed to facilitate E2-ubiquitin binding. Together, the results underscore the importance of parkin activation by the PINK1 phosphorylation signal and provide a structural picture of the unraveling of parkin's ubiquitin ligase potential.

摘要

PARK2和PARK6基因的突变是大多数遗传性帕金森病病例的病因。这些基因分别编码E3泛素连接酶帕金和蛋白激酶PTEN诱导激酶1(PINK1)。帕金和PINK1共同调节线粒体自噬途径,该途径在氧化应激后回收受损的线粒体。天然帕金是无活性的,以其泛素样(UBL)结构域介导的自抑制状态存在。帕金的UBL结构域中丝氨酸65和泛素的丝氨酸65的PINK1磷酸化可完全激活泛素连接酶活性;然而,这些观察结果的结构原理尚不清楚。在这里,我们报告了帕金磷酸化UBL结构域的结构。我们发现,UBL的不稳定是由疏水核心堆积的重排导致其结构改变引起的。磷酸丝氨酸基团改变的表面静电破坏了其分子内缔合,导致磷酸化帕金的自抑制作用较差。此外,我们表明,UBL结构域和泛素的磷酸化都是激活帕金所必需的,通过释放UBL结构域,形成促进E2-泛素结合所需的延伸结构。总之,这些结果强调了PINK1磷酸化信号激活帕金的重要性,并提供了帕金泛素连接酶潜力解开过程的结构图景。

相似文献

1
Structure of phosphorylated UBL domain and insights into PINK1-orchestrated parkin activation.
Proc Natl Acad Sci U S A. 2017 Jan 10;114(2):298-303. doi: 10.1073/pnas.1613040114. Epub 2016 Dec 22.
2
Phosphorylation by PINK1 releases the UBL domain and initializes the conformational opening of the E3 ubiquitin ligase Parkin.
PLoS Comput Biol. 2014 Nov 6;10(11):e1003935. doi: 10.1371/journal.pcbi.1003935. eCollection 2014 Nov.
3
Impact of altered phosphorylation on loss of function of juvenile Parkinsonism-associated genetic variants of the E3 ligase parkin.
J Biol Chem. 2018 Apr 27;293(17):6337-6348. doi: 10.1074/jbc.RA117.000605. Epub 2018 Mar 12.
4
Mechanism of phospho-ubiquitin-induced PARKIN activation.
Nature. 2015 Aug 20;524(7565):370-4. doi: 10.1038/nature14879. Epub 2015 Jul 10.
5
A Ubl/ubiquitin switch in the activation of Parkin.
EMBO J. 2015 Oct 14;34(20):2492-505. doi: 10.15252/embj.201592237. Epub 2015 Aug 7.
6
Parkin is activated by PINK1-dependent phosphorylation of ubiquitin at Ser65.
Biochem J. 2014 May 15;460(1):127-39. doi: 10.1042/BJ20140334.
7
Activation of the E3 ubiquitin ligase Parkin.
Biochem Soc Trans. 2015 Apr;43(2):269-74. doi: 10.1042/BST20140321.
8
Binding to serine 65-phosphorylated ubiquitin primes Parkin for optimal PINK1-dependent phosphorylation and activation.
EMBO Rep. 2015 Aug;16(8):939-54. doi: 10.15252/embr.201540352. Epub 2015 Jun 25.
9
PINK1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity.
J Cell Biol. 2014 Apr 28;205(2):143-53. doi: 10.1083/jcb.201402104. Epub 2014 Apr 21.
10
Ubiquitin is phosphorylated by PINK1 to activate parkin.
Nature. 2014 Jun 5;510(7503):162-6. doi: 10.1038/nature13392. Epub 2014 Jun 4.

引用本文的文献

1
A substrate-interacting region of Parkin directs ubiquitination of the mitochondrial GTPase Miro1.
J Cell Biol. 2025 Aug 4;224(8). doi: 10.1083/jcb.202408025. Epub 2025 Jun 27.
2
Mitochondrial quality control: the real dawn of intervertebral disc degeneration?
J Transl Med. 2024 Dec 20;22(1):1126. doi: 10.1186/s12967-024-05943-9.
3
Capturing the catalytic intermediates of parkin ubiquitination.
Proc Natl Acad Sci U S A. 2024 Aug 6;121(32):e2403114121. doi: 10.1073/pnas.2403114121. Epub 2024 Jul 30.
4
A substrate-interacting region of Parkin directs ubiquitination of the mitochondrial GTPase Miro1.
bioRxiv. 2024 Jun 3:2024.06.03.597144. doi: 10.1101/2024.06.03.597144.
5
[Research progress on the role of chondrocyte mitochondrial homeostasis imbalance in the pathogenesis of osteoarthritis].
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2023 Jun 15;37(6):748-757. doi: 10.7507/1002-1892.202303006.
6
Role of Mitophagy in Regulating Intestinal Oxidative Damage.
Antioxidants (Basel). 2023 Feb 14;12(2):480. doi: 10.3390/antiox12020480.
7
Parkin coregulates glutathione metabolism in adult mammalian brain.
Acta Neuropathol Commun. 2023 Jan 23;11(1):19. doi: 10.1186/s40478-022-01488-4.
8
Cell Biology of Parkin: Clues to the Development of New Therapeutics for Parkinson's Disease.
CNS Drugs. 2022 Dec;36(12):1249-1267. doi: 10.1007/s40263-022-00973-7. Epub 2022 Nov 15.
9
The compartmentalised nature of neuronal mitophagy: molecular insights and implications.
Expert Rev Mol Med. 2022 Sep 29;24:e38. doi: 10.1017/erm.2022.31.
10
Cullin-independent recognition of HHARI substrates by a dynamic RBR catalytic domain.
Structure. 2022 Sep 1;30(9):1269-1284.e6. doi: 10.1016/j.str.2022.05.017. Epub 2022 Jun 17.

本文引用的文献

1
Probes of ubiquitin E3 ligases enable systematic dissection of parkin activation.
Nat Chem Biol. 2016 May;12(5):324-31. doi: 10.1038/nchembio.2045. Epub 2016 Mar 7.
3
The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy.
Nature. 2015 Aug 20;524(7565):309-314. doi: 10.1038/nature14893. Epub 2015 Aug 12.
4
Site-specific Interaction Mapping of Phosphorylated Ubiquitin to Uncover Parkin Activation.
J Biol Chem. 2015 Oct 16;290(42):25199-211. doi: 10.1074/jbc.M115.671446. Epub 2015 Aug 10.
5
A Ubl/ubiquitin switch in the activation of Parkin.
EMBO J. 2015 Oct 14;34(20):2492-505. doi: 10.15252/embj.201592237. Epub 2015 Aug 7.
6
Disruption of the autoinhibited state primes the E3 ligase parkin for activation and catalysis.
EMBO J. 2015 Oct 14;34(20):2506-21. doi: 10.15252/embj.201592337. Epub 2015 Aug 7.
7
Mechanism of phospho-ubiquitin-induced PARKIN activation.
Nature. 2015 Aug 20;524(7565):370-4. doi: 10.1038/nature14879. Epub 2015 Jul 10.
8
Advanced ensemble modelling of flexible macromolecules using X-ray solution scattering.
IUCrJ. 2015 Feb 26;2(Pt 2):207-17. doi: 10.1107/S205225251500202X. eCollection 2015 Mar 1.
9
Activation of the E3 ubiquitin ligase Parkin.
Biochem Soc Trans. 2015 Apr;43(2):269-74. doi: 10.1042/BST20140321.
10
The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson's disease.
Neuron. 2015 Jan 21;85(2):257-73. doi: 10.1016/j.neuron.2014.12.007.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验