Suppr超能文献

PINK1介导的磷酸化作用会释放泛素样结构域(UBL结构域),并引发E3泛素连接酶帕金蛋白(Parkin)的构象开放。

Phosphorylation by PINK1 releases the UBL domain and initializes the conformational opening of the E3 ubiquitin ligase Parkin.

作者信息

Caulfield Thomas R, Fiesel Fabienne C, Moussaud-Lamodière Elisabeth L, Dourado Daniel F A R, Flores Samuel C, Springer Wolfdieter

机构信息

Department of Neuroscience, Mayo Clinic Jacksonville, Florida, United States of America.

Department of Cell & Molecular Biology, Computational & Systems Biology, Uppsala University, Uppsala, Sweden.

出版信息

PLoS Comput Biol. 2014 Nov 6;10(11):e1003935. doi: 10.1371/journal.pcbi.1003935. eCollection 2014 Nov.

Abstract

Loss-of-function mutations in PINK1 or PARKIN are the most common causes of autosomal recessive Parkinson's disease. Both gene products, the Ser/Thr kinase PINK1 and the E3 Ubiquitin ligase Parkin, functionally cooperate in a mitochondrial quality control pathway. Upon stress, PINK1 activates Parkin and enables its translocation to and ubiquitination of damaged mitochondria to facilitate their clearance from the cell. Though PINK1-dependent phosphorylation of Ser65 is an important initial step, the molecular mechanisms underlying the activation of Parkin's enzymatic functions remain unclear. Using molecular modeling, we generated a complete structural model of human Parkin at all atom resolution. At steady state, the Ub ligase is maintained inactive in a closed, auto-inhibited conformation that results from intra-molecular interactions. Evidently, Parkin has to undergo major structural rearrangements in order to unleash its catalytic activity. As a spark, we have modeled PINK1-dependent Ser65 phosphorylation in silico and provide the first molecular dynamics simulation of Parkin conformations along a sequential unfolding pathway that could release its intertwined domains and enable its catalytic activity. We combined free (unbiased) molecular dynamics simulation, Monte Carlo algorithms, and minimal-biasing methods with cell-based high content imaging and biochemical assays. Phosphorylation of Ser65 results in widening of a newly defined cleft and dissociation of the regulatory N-terminal UBL domain. This motion propagates through further opening conformations that allow binding of an Ub-loaded E2 co-enzyme. Subsequent spatial reorientation of the catalytic centers of both enzymes might facilitate the transfer of the Ub moiety to charge Parkin. Our structure-function study provides the basis to elucidate regulatory mechanisms and activity of the neuroprotective Parkin. This may open up new avenues for the development of small molecule Parkin activators through targeted drug design.

摘要

PINK1或PARKIN功能丧失突变是常染色体隐性帕金森病最常见的病因。这两种基因产物,即丝氨酸/苏氨酸激酶PINK1和E3泛素连接酶PARKIN,在线粒体质量控制途径中发挥功能协同作用。在应激状态下,PINK1激活PARKIN,并使其易位至受损线粒体并对其进行泛素化,以促进线粒体从细胞中清除。虽然丝氨酸65的PINK1依赖性磷酸化是重要的起始步骤,但PARKIN酶功能激活的分子机制仍不清楚。利用分子建模,我们生成了全原子分辨率的人类PARKIN完整结构模型。在稳态下,泛素连接酶以封闭的、自抑制构象保持无活性,这种构象是由分子内相互作用产生的。显然,PARKIN必须经历重大的结构重排才能释放其催化活性。作为一个突破口,我们在计算机上模拟了PINK1依赖性丝氨酸65磷酸化,并提供了PARKIN构象沿着可能释放其相互缠绕结构域并使其具有催化活性的连续展开途径的首次分子动力学模拟。我们将自由(无偏)分子动力学模拟、蒙特卡罗算法和最小偏置方法与基于细胞的高内涵成像和生化分析相结合。丝氨酸65的磷酸化导致新定义的裂隙变宽和调节性N端UBL结构域的解离。这种运动通过进一步的开放构象传播,允许结合负载泛素的E2辅酶。随后两种酶催化中心的空间重新定向可能促进泛素部分的转移以激活PARKIN。我们的结构-功能研究为阐明神经保护因子PARKIN的调节机制和活性提供了基础。这可能为通过靶向药物设计开发小分子PARKIN激活剂开辟新途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d627/4222639/d524b1b5db6d/pcbi.1003935.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验