Suppr超能文献

利用石墨烯纳米孔电容器调节分子通量。

Modulation of Molecular Flux Using a Graphene Nanopore Capacitor.

机构信息

Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States.

出版信息

J Phys Chem B. 2017 Apr 20;121(15):3724-3733. doi: 10.1021/acs.jpcb.6b10574. Epub 2017 Jan 17.

Abstract

Modulation of ionic current flowing through nanoscale pores is one of the fundamental biological processes. Inspired by nature, nanopores in synthetic solid-state membranes are being developed to enable rapid analysis of biological macromolecules and to serve as elements of nanofludic circuits. Here, we theoretically investigate ion and water transport through a graphene-insulator-graphene membrane containing a single, electrolyte-filled nanopore. By means of all-atom molecular dynamics simulations, we show that the charge state of such a graphene nanopore capacitor can regulate both the selectivity and the magnitude of the nanopore ionic current. At a fixed transmembrane bias, the ionic current can be switched from being carried by an equal mixture of cations and anions to being carried almost exclusively by either cationic or anionic species, depending on the sign of the charge assigned to both plates of the capacitor. Assigning the plates of the capacitor opposite sign charges can either increase the nanopore current or reduce it substantially, depending on the polarity of the bias driving the transmembrane current. Facilitated by the changes of the nanopore surface charge, such ionic current modulations are found to occur despite the physical dimensions of the nanopore being an order of magnitude larger than the screening length of the electrolyte. The ionic current rectification is accompanied by a pronounced electro-osmotic effect that can transport neutral molecules such as proteins and drugs across the solid-state membrane and thereby serve as an interface between electronic and chemical signals.

摘要

离子在纳米尺度孔道中传输的调控是基本的生物学过程之一。受自然启发,人们正在开发合成固态膜中的纳米孔道,以实现对生物大分子的快速分析,并作为纳流控电路的元件。在这里,我们从理论上研究了含有单个电解质填充纳米孔的石墨烯-绝缘体-石墨烯膜中离子和水的输运。通过全原子分子动力学模拟,我们表明这种石墨烯纳米孔电容器的荷电状态可以调节纳米孔离子电流的选择性和大小。在固定的跨膜偏压下,根据施加到电容器两个极板上的电荷的符号,可以将离子电流从由阳离子和阴离子的混合物携带切换为主要由阳离子或阴离子携带。根据驱动跨膜电流的偏压的极性,给电容器的极板施加相反符号的电荷可以增加或大大减少纳米孔电流。尽管纳米孔的物理尺寸比电解质的屏蔽长度大一个数量级,但通过纳米孔表面电荷的变化,可以实现这种离子电流的调制。这种离子电流整流伴随着明显的电动渗透效应,可将中性分子(如蛋白质和药物)输送穿过固态膜,并因此作为电子和化学信号之间的接口。

相似文献

1
Modulation of Molecular Flux Using a Graphene Nanopore Capacitor.
J Phys Chem B. 2017 Apr 20;121(15):3724-3733. doi: 10.1021/acs.jpcb.6b10574. Epub 2017 Jan 17.
2
Spatial blockage of ionic current for electrophoretic translocation of DNA through a graphene nanopore.
Electrophoresis. 2014 Apr;35(8):1144-51. doi: 10.1002/elps.201300501. Epub 2014 Mar 5.
3
Modulation of Charge Density and Charge Polarity of Nanopore Wall by Salt Gradient and Voltage.
ACS Nano. 2019 Sep 24;13(9):9868-9879. doi: 10.1021/acsnano.9b01357. Epub 2019 Jul 31.
4
Optimal design of graphene nanopores for seawater desalination.
J Chem Phys. 2018 Jan 7;148(1):014703. doi: 10.1063/1.5002746.
5
DNA Origami-Graphene Hybrid Nanopore for DNA Detection.
ACS Appl Mater Interfaces. 2017 Jan 11;9(1):92-100. doi: 10.1021/acsami.6b11001. Epub 2016 Dec 22.
6
Graphene Nanopores for Electronic Recognition of DNA Methylation.
J Phys Chem B. 2017 Apr 20;121(15):3757-3763. doi: 10.1021/acs.jpcb.6b11040. Epub 2016 Dec 30.
7
Multistep current signal in protein translocation through graphene nanopores.
J Phys Chem B. 2015 May 7;119(18):5815-23. doi: 10.1021/acs.jpcb.5b02172. Epub 2015 Apr 28.
8
Electro-osmotic Flow Generation via a Sticky Ion Action.
ACS Nano. 2024 Jul 9;18(27):17521-17533. doi: 10.1021/acsnano.4c00829. Epub 2024 Jun 4.
9
Physical Model for Rapid and Accurate Determination of Nanopore Size via Conductance Measurement.
ACS Sens. 2017 Oct 27;2(10):1523-1530. doi: 10.1021/acssensors.7b00576. Epub 2017 Oct 17.
10
Ion selection of charge-modified large nanopores in a graphene sheet.
J Chem Phys. 2013 Sep 21;139(11):114702. doi: 10.1063/1.4821161.

引用本文的文献

1
Graphite-Based Bio-Mimetic Nanopores for Protein Sequencing and Beyond.
Small. 2025 Jan;21(2):e2407647. doi: 10.1002/smll.202407647. Epub 2024 Nov 7.
2
Electro-osmotic Flow Generation via a Sticky Ion Action.
ACS Nano. 2024 Jul 9;18(27):17521-17533. doi: 10.1021/acsnano.4c00829. Epub 2024 Jun 4.
3
Electro-Osmotic Flow Generation via a Sticky Ion Action.
bioRxiv. 2023 Dec 15:2023.12.14.571673. doi: 10.1101/2023.12.14.571673.
4
Ionic Transport in Electrostatic Janus Membranes. An Explicit Solvent Molecular Dynamic Simulation.
ACS Nano. 2022 Mar 22;16(3):3768-3775. doi: 10.1021/acsnano.1c07706. Epub 2022 Mar 1.
5
Electro-Mechanical Conductance Modulation of a Nanopore Using a Removable Gate.
ACS Nano. 2019 Feb 26;13(2):2398-2409. doi: 10.1021/acsnano.8b09266. Epub 2019 Feb 8.
6
SDS-assisted protein transport through solid-state nanopores.
Nanoscale. 2017 Aug 17;9(32):11685-11693. doi: 10.1039/c7nr02450a.
7
Nanoscale Ion Pump Derived from a Biological Water Channel.
J Phys Chem B. 2017 Aug 24;121(33):7899-7906. doi: 10.1021/acs.jpcb.7b05568. Epub 2017 Aug 9.

本文引用的文献

1
Quantifying Nanomolar Protein Concentrations Using Designed DNA Carriers and Solid-State Nanopores.
Nano Lett. 2016 Jun 8;16(6):3557-62. doi: 10.1021/acs.nanolett.6b00627. Epub 2016 May 3.
2
Ion selectivity of graphene nanopores.
Nat Commun. 2016 Apr 22;7:11408. doi: 10.1038/ncomms11408.
3
Rectification of nanopores in aprotic solvents--transport properties of nanopores with surface dipoles.
Nanoscale. 2015 Dec 7;7(45):19080-91. doi: 10.1039/c5nr06340j. Epub 2015 Nov 2.
4
Slowing DNA Transport Using Graphene-DNA Interactions.
Adv Funct Mater. 2015 Feb 11;25(6):936-946. doi: 10.1002/adfm.201403719.
5
Electroosmotic flow rectification in conical nanopores.
Nanotechnology. 2015 Jul 10;26(27):275202. doi: 10.1088/0957-4484/26/27/275202.
6
Water desalination using nanoporous single-layer graphene.
Nat Nanotechnol. 2015 May;10(5):459-64. doi: 10.1038/nnano.2015.37. Epub 2015 Mar 23.
7
Rectification of Ion Current in Nanopores Depends on the Type of Monovalent Cations: Experiments and Modeling.
J Phys Chem C Nanomater Interfaces. 2014 May 8;118(18):9809-9819. doi: 10.1021/jp501492g. Epub 2014 Apr 14.
8
Ionic conductivity, structural deformation, and programmable anisotropy of DNA origami in electric field.
ACS Nano. 2015 Feb 24;9(2):1420-33. doi: 10.1021/nn505825z. Epub 2015 Jan 30.
10
Single-molecule spectroscopy of amino acids and peptides by recognition tunnelling.
Nat Nanotechnol. 2014 Jun;9(6):466-73. doi: 10.1038/nnano.2014.54. Epub 2014 Apr 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验