Suppr超能文献

利用石墨烯纳米孔电容器调节分子通量。

Modulation of Molecular Flux Using a Graphene Nanopore Capacitor.

机构信息

Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States.

出版信息

J Phys Chem B. 2017 Apr 20;121(15):3724-3733. doi: 10.1021/acs.jpcb.6b10574. Epub 2017 Jan 17.

Abstract

Modulation of ionic current flowing through nanoscale pores is one of the fundamental biological processes. Inspired by nature, nanopores in synthetic solid-state membranes are being developed to enable rapid analysis of biological macromolecules and to serve as elements of nanofludic circuits. Here, we theoretically investigate ion and water transport through a graphene-insulator-graphene membrane containing a single, electrolyte-filled nanopore. By means of all-atom molecular dynamics simulations, we show that the charge state of such a graphene nanopore capacitor can regulate both the selectivity and the magnitude of the nanopore ionic current. At a fixed transmembrane bias, the ionic current can be switched from being carried by an equal mixture of cations and anions to being carried almost exclusively by either cationic or anionic species, depending on the sign of the charge assigned to both plates of the capacitor. Assigning the plates of the capacitor opposite sign charges can either increase the nanopore current or reduce it substantially, depending on the polarity of the bias driving the transmembrane current. Facilitated by the changes of the nanopore surface charge, such ionic current modulations are found to occur despite the physical dimensions of the nanopore being an order of magnitude larger than the screening length of the electrolyte. The ionic current rectification is accompanied by a pronounced electro-osmotic effect that can transport neutral molecules such as proteins and drugs across the solid-state membrane and thereby serve as an interface between electronic and chemical signals.

摘要

离子在纳米尺度孔道中传输的调控是基本的生物学过程之一。受自然启发,人们正在开发合成固态膜中的纳米孔道,以实现对生物大分子的快速分析,并作为纳流控电路的元件。在这里,我们从理论上研究了含有单个电解质填充纳米孔的石墨烯-绝缘体-石墨烯膜中离子和水的输运。通过全原子分子动力学模拟,我们表明这种石墨烯纳米孔电容器的荷电状态可以调节纳米孔离子电流的选择性和大小。在固定的跨膜偏压下,根据施加到电容器两个极板上的电荷的符号,可以将离子电流从由阳离子和阴离子的混合物携带切换为主要由阳离子或阴离子携带。根据驱动跨膜电流的偏压的极性,给电容器的极板施加相反符号的电荷可以增加或大大减少纳米孔电流。尽管纳米孔的物理尺寸比电解质的屏蔽长度大一个数量级,但通过纳米孔表面电荷的变化,可以实现这种离子电流的调制。这种离子电流整流伴随着明显的电动渗透效应,可将中性分子(如蛋白质和药物)输送穿过固态膜,并因此作为电子和化学信号之间的接口。

相似文献

1
Modulation of Molecular Flux Using a Graphene Nanopore Capacitor.利用石墨烯纳米孔电容器调节分子通量。
J Phys Chem B. 2017 Apr 20;121(15):3724-3733. doi: 10.1021/acs.jpcb.6b10574. Epub 2017 Jan 17.
5
DNA Origami-Graphene Hybrid Nanopore for DNA Detection.DNA 折纸-石墨烯杂化纳米孔用于 DNA 检测。
ACS Appl Mater Interfaces. 2017 Jan 11;9(1):92-100. doi: 10.1021/acsami.6b11001. Epub 2016 Dec 22.
6
Graphene Nanopores for Electronic Recognition of DNA Methylation.石墨烯纳米孔用于 DNA 甲基化的电子识别。
J Phys Chem B. 2017 Apr 20;121(15):3757-3763. doi: 10.1021/acs.jpcb.6b11040. Epub 2016 Dec 30.
8
Electro-osmotic Flow Generation via a Sticky Ion Action.黏附离子作用驱动的电渗透流产生。
ACS Nano. 2024 Jul 9;18(27):17521-17533. doi: 10.1021/acsnano.4c00829. Epub 2024 Jun 4.

引用本文的文献

本文引用的文献

2
Ion selectivity of graphene nanopores.石墨烯纳米孔的离子选择性
Nat Commun. 2016 Apr 22;7:11408. doi: 10.1038/ncomms11408.
4
Slowing DNA Transport Using Graphene-DNA Interactions.利用石墨烯与DNA的相互作用减缓DNA运输
Adv Funct Mater. 2015 Feb 11;25(6):936-946. doi: 10.1002/adfm.201403719.
5
Electroosmotic flow rectification in conical nanopores.锥形纳米孔中的电渗流整流
Nanotechnology. 2015 Jul 10;26(27):275202. doi: 10.1088/0957-4484/26/27/275202.
6
Water desalination using nanoporous single-layer graphene.使用纳米多孔单层石墨烯进行海水淡化。
Nat Nanotechnol. 2015 May;10(5):459-64. doi: 10.1038/nnano.2015.37. Epub 2015 Mar 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验